首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1,证明:存在ξ∈(0,3),使得f’(ξ)=0.
设f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1,证明:存在ξ∈(0,3),使得f’(ξ)=0.
admin
2022-06-30
29
问题
设f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1,证明:存在ξ∈(0,3),使得f’(ξ)=0.
选项
答案
因为f(x)在[0,3]上连续,所以f(x)在[0,3]上取到最小值m和最大值M. 3m≤f(0)+f(1)+f(2)≤3M,即m≤1≤M, 由介值定理,存在c∈[0,3],使得f(c)=1. 因为f(c)=f(3)=1,所以由罗尔定理,存在ξ∈(c,3)[*](0,3),使得f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/U1f4777K
0
考研数学二
相关试题推荐
设A为3阶非零矩阵,且满足aij=Aij(i,j=1,2,3),其中Aij为aij的代数余子式,则下列结论:①A是可逆矩阵;②A是对称矩阵;③A是不可逆矩阵;④A是正交矩阵.其中正确的个数为(
设函数z=(1+ey)cosx—yey,则函数z=f(x,y)()
设y=f(x)是方程y’’一2y’+4y=0的一个解,且f’(x0)>0,f’(x0)=0,则函数f(x)在点x0处()
f(x)在(-∞,+∞)内二阶可导,f"(x)<0,=1,则f(x)在(-∞,0)内().
设f(x)是连续函数,F(x)是f(x)的一个原函数,则()
曲线上t=1对应的点处的曲率半径为().
设f(x)和φ(x)在(-∞,+∞)上有定义,f(x)为连续函数,且,(φ)≠0,f(x)有间断点,则
(Ⅰ)设0<x<+∞,证明存在η,0<η<1,使;(Ⅱ)求出(Ⅰ)中η关于x的具体函数表达式η=η(x),并求出当0<x<+∞时,函数η(x)的值域.
设y=exsinx,求y(n).
设l为从点A(一1,0)沿曲线y=x—x3到点B(1,0)的有向弧段,求第二类曲线积分I=∫L(exsinx+3y—cosy)dx+(xsiny—y)dy.
随机试题
有中枢兴奋作用的药物是
A.Austin-flint杂音B.Craham-Steel杂音C.Dster征D.Kussmaul征E.Ewart征
下列关于某病病死率和死亡率的描述正确的是
人类非淋菌性尿道炎的重要病原体是
对于可撤销合同,具有撤销权的当事人(),撤销权消灭。
第二类危险源指造成约束、限制能量措施失效或破坏的各种不安全因素,主要包括以下几个方面:()
ERP是在MRlPⅡ的基础上发展起来的一个管理信息系统。ERP集成了企业物流、()、信息流三大资源。
《文化和旅游部办公厅关于推进旅游企业扩大复工复业有关事项的通知》规定,旅游景区接待游客量调至不得超过最大承载量的()。
在美国,总额420万美元的大学奖学金津贴去年无人问津,因为许多奖学金项目没有吸引到合乎项目标准的申请者。这在一个每年有成千上万名有前途的学生付不起学费的国家是一种惊人的资金浪费。因此这些奖学金的标准应当被修改。下列哪一项如果为真。最支持上面的结论?
Translationisgenerallyregardedaseitheranelementaryoranoverlycomplexexercise.Toooftenitisregardedasmerelyama
最新回复
(
0
)