首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:方程xα=lnx(α<0)在(0,+∞)上有且仅有一个实根.
证明:方程xα=lnx(α<0)在(0,+∞)上有且仅有一个实根.
admin
2020-03-16
95
问题
证明:方程x
α
=lnx(α<0)在(0,+∞)上有且仅有一个实根.
选项
答案
令f(x)=lnx-x
α
(α>0),则f(x)在(0,+∞)上4连续,f(1)=-1<0,[*]故对任意M>0,存在X>1,当x>X时,有f(x)>M>0.任取x
0
>X,则f(1)f(x
0
)<0,根据零点定理知,存在ξ∈(1,x
0
),使得f(ξ)=0,即方程x
α
=lnx在(0,+∞)上至少有一实根. 又lnx在(0,+∞)上单调递增,因α<0,一x
α
也单调递增,从而f(x)在(0,+∞)上单调递增,因此方程f(x)=0在(0,+∞)上只有一个实根,即方程x
α
=lnx在(0,+∞)上只有一个实根.
解析
转载请注明原文地址:https://kaotiyun.com/show/YdA4777K
0
考研数学二
相关试题推荐
[2001年]已知f(x)在(一∞,+∞)内可导,f′(x)=e,[f(x)一f(x一1)],则c=_________.
[2003年]设函数f(x)在(一∞,+∞)内连续,其导函数的图形如图1.2.5.1所示,则f(x)有().
[2018年]设函数f(x)=若f(x)+g(x)在R上连续,则().
[2006年]设函数y=y(x)由方程y=1一xey确定,则=__________.
[2005年]设函数f(x)连续,且f(0)≠0,求极限
[2003年]an=,则极限nan等于().
[2011年](I)证明对任意的正整数,都有成立;(Ⅱ)设an=1+一lnn(n=1,2,…),证明数列{an}收敛.
设f(x)在[0,1]上连续且递减,证明:当0<λ<1时,∫01f(x)dx≥λ∫01f(x)dx.
[2014年]设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明:∫aa-∫abg(t)dtf(x)dx≤∫abf(x)g(x)dx.
[2004年]曲线y=(ex+e-x)/2与直线x=0,x=t(t>0)及y=0围成一曲边梯形.该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t).计算极限
随机试题
TheNorwegianNobelCommitteehasdecidedto【21】theNobelPeacePrizefor1998toJohnHumeandDavidTrimblefortheirefforts
关于鼓室,下列哪项是错误的
婴儿鹅口疮
麻黄辛、微苦,温,归肺、膀胱经,其功效为
对于半衰期长的药物,要迅速达到稳态血药浓度可采用的给药方法是()。
设A为3×2矩阵,B为2×3矩阵,则必有()。
所有的票据当事人必须同时出现在某一张票据上。()
问君能有几多愁,恰似一江春水向东流:李煜
下列选项中,属于全国人民代表大会常务委员会职权的是()。
“聂赫留朵夫”是哪部作品中的人物?()
最新回复
(
0
)