首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明: 存在η∈(a,b),使得f’’(η)-3f’(η)+zf(η)=0.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明: 存在η∈(a,b),使得f’’(η)-3f’(η)+zf(η)=0.
admin
2018-05-25
78
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫
a
b
f(x)dx=0.证明:
存在η∈(a,b),使得f’’(η)-3f’(η)+zf(η)=0.
选项
答案
令g(x)=e
-x
f(x),g(a)=g(c)=g(b)=0, 由罗尔定理,存在η
1
∈(a,c),η
2
∈(c,b),使得g’(η
1
)=g’(η
2
)=0, 而g’(x)=e
-x
[f’(x)-f(x)]且e
-x
≠0,所以f’(η
1
)-f(η
1
)=0,f’(η
2
)-f(η
2
)=0. 令φ(x)=e
-2x
[f’(x)-f(x)],φ(η
1
)=φ(η
2
)=0, 由罗尔定理,存在η∈(η
1
,η
2
)[*](a,b),使得φ’(η)=0, 而φ’(x)=e
-2x
[f’’(x)-3f’(x)+2f(x)]且e
-2x
≠0, 所以f’’(η)-3f’(η)+2f(η)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/JoW4777K
0
考研数学三
相关试题推荐
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:(1)在(a,b)内至少存在一点ξ,使得fˊ(ξ)=f(ξ);(2)在(a,b)内至少存在一点η,且η≠ξ,使得fˊˊ(η)=f(η
下列结论正确的是()
设函数x=x(y)由方程x(y-x)2=y所确定,试求不定积分
设随机变量X与Y独立同分布,均服从正态分布N(μ,σ2),求:(1)max{X,Y}的数学期望;(2)min{X,Y}的数学期望.
讨论下列函数的连续性并判断间断点的类型:
判断下列结论是否正确?为什么?(Ⅰ)若函数f(x),g(x)均在x0处可导,且f(x0)=g(x0),则f’(x0)=g’(x0);(Ⅱ)若x∈(x0-δ,x0+δ),x≠x0时f(x)=g(x),则f(x)与g(x)在x=x0处有相同
设A=,正交矩阵Q使得QTAQ为对角矩阵.若Q的第1列为(1,2,1)T,求a,Q.
设f(x)在(-∞,+∞)有一阶连续导数,且f(0)=0并存在f’’(0).若求F’(x),并证明F’(x)在(-∞,+∞)上连续.
设f(x)在点x=0处具有二阶导数,且求f(0),f’(0)与f’’(0).
设则f’(t)=___________.
随机试题
可燃物品较少、火灾放热速率较低、外部增援和人员疏散较容易的场所设置自动喷水灭火系统时火灾危险等级为()。
手工钨极氩弧焊电流种类和极性为_____。
PlantingaGardenPlantingagardenisalotlikehavingafamily.Bothrequireagreatdealofwork,【B1】________astheyg
A、sessionB、essayC、assistD、messageA
轻度甲亢重度甲亢
下述哪项能否定完全性葡萄胎的诊断
在项目的经济分析中,属于转移支付的有()。
我国的社会主义改革是一场新的革命,其性质是()。
阅读下面的短文。回答:①我们这些总有一死的人的命运是多么奇特呀!我们每个人在这个世界上都只做一个短暂的逗留,目的何在,却无所知,尽管有的自以为对此若有所感。但是不必深思,只要从日常生活就可以明白:人是为别人而生存的——首先是那样一些人.他们的喜悦和健
Whatisthemostfundamentaldifferencebetweenplantsandanimals?
最新回复
(
0
)