首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明: 存在η∈(a,b),使得f’’(η)-3f’(η)+zf(η)=0.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明: 存在η∈(a,b),使得f’’(η)-3f’(η)+zf(η)=0.
admin
2018-05-25
35
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫
a
b
f(x)dx=0.证明:
存在η∈(a,b),使得f’’(η)-3f’(η)+zf(η)=0.
选项
答案
令g(x)=e
-x
f(x),g(a)=g(c)=g(b)=0, 由罗尔定理,存在η
1
∈(a,c),η
2
∈(c,b),使得g’(η
1
)=g’(η
2
)=0, 而g’(x)=e
-x
[f’(x)-f(x)]且e
-x
≠0,所以f’(η
1
)-f(η
1
)=0,f’(η
2
)-f(η
2
)=0. 令φ(x)=e
-2x
[f’(x)-f(x)],φ(η
1
)=φ(η
2
)=0, 由罗尔定理,存在η∈(η
1
,η
2
)[*](a,b),使得φ’(η)=0, 而φ’(x)=e
-2x
[f’’(x)-3f’(x)+2f(x)]且e
-2x
≠0, 所以f’’(η)-3f’(η)+2f(η)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/JoW4777K
0
考研数学三
相关试题推荐
f(x)在[0,1]上有连续导数,且f(0)=0.证明:存在ξ∈[0,1],使得fˊ(ξ)=2∫01f(x)dx.
对三台仪器进行检验,各台仪器产生故障的概率分别为p1,p2,p3,求产生故障仪器的台数X的数学期望和方差.
设(X,Y)的概率密度为求Z=的数学期望.
设随机变量X和Y均服从B(1,),且D(X+Y)=1,则X与Y的相关系ρ=________.
设向量组(Ⅰ)与向量组(Ⅱ),若(Ⅰ)可由(Ⅱ)线性表示,且r(Ⅰ)=r(Ⅱ)=r.证明:(Ⅰ)与(Ⅱ)等价.
设A是秩为n-1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA.证明:当λ>0时,矩阵B为正定矩阵.
已知A=,求可逆矩阵P,化A为相似标准形A,并写出对角矩阵A.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(b)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式;
随机试题
发展社会主义民主政治是中国共产党始终不渝的奋斗目标。社会主义民主政治的本质和核心是
罂粟哌替啶
患儿女,1岁。多汗,睡眠不安,方颅及肋骨串珠,X线检查骨骺端临时钙化带消失,呈毛刷样,杯口状改变,骨骺软骨带明显增宽,骨密度减低。后遗症常常发生的年龄在
设置在配筋砌体水平灰缝中的钢筋,应居中放置在灰缝中的目的一是对钢筋有较好的保护,二是()
下列各项内容中属于施工招标文件中投标人须知的是()。
在《普通高中化学课程标准(实验)》中,“认识化学键的含义,知道离子键和共价键的形成”内容标准对应的课程模块是()。
Onesnowyday,thewindsgrewstrongerandthesnowturnedintoablindingsnowstorm.Afarmersatdowntorelaxbeforethefire
意志的活动过程会体现以下两大定律。其中,意志强度边际效应定律是指意志的强度随着自身行为的活动规模的增长而下降;意志强度时间衰减定律是指意志的强度随着自身行为的持续时间的增长而呈现负指数下降。 根据上述定义,下列选项最能体现意志强度时间衰减定律的是:
•YouwillheartheopeningoftheFactoriesoftheYearawardsceremony.•Asyoulisten,forquestions1-12,completethenote
Onlywhenyouhaveagoodknowledgeofgrammar______writecorrectly.
最新回复
(
0
)