设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明: 存在η∈(a,b),使得f’’(η)-3f’(η)+zf(η)=0.

admin2018-05-25  31

问题 设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:
存在η∈(a,b),使得f’’(η)-3f’(η)+zf(η)=0.

选项

答案令g(x)=e-xf(x),g(a)=g(c)=g(b)=0, 由罗尔定理,存在η1∈(a,c),η2∈(c,b),使得g’(η1)=g’(η2)=0, 而g’(x)=e-x[f’(x)-f(x)]且e-x≠0,所以f’(η1)-f(η1)=0,f’(η2)-f(η2)=0. 令φ(x)=e-2x[f’(x)-f(x)],φ(η1)=φ(η2)=0, 由罗尔定理,存在η∈(η1,η2)[*](a,b),使得φ’(η)=0, 而φ’(x)=e-2x[f’’(x)-3f’(x)+2f(x)]且e-2x≠0, 所以f’’(η)-3f’(η)+2f(η)=0.

解析
转载请注明原文地址:https://kaotiyun.com/show/JoW4777K
0

最新回复(0)