首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明: 存在η∈(a,b),使得f’’(η)-3f’(η)+zf(η)=0.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明: 存在η∈(a,b),使得f’’(η)-3f’(η)+zf(η)=0.
admin
2018-05-25
52
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫
a
b
f(x)dx=0.证明:
存在η∈(a,b),使得f’’(η)-3f’(η)+zf(η)=0.
选项
答案
令g(x)=e
-x
f(x),g(a)=g(c)=g(b)=0, 由罗尔定理,存在η
1
∈(a,c),η
2
∈(c,b),使得g’(η
1
)=g’(η
2
)=0, 而g’(x)=e
-x
[f’(x)-f(x)]且e
-x
≠0,所以f’(η
1
)-f(η
1
)=0,f’(η
2
)-f(η
2
)=0. 令φ(x)=e
-2x
[f’(x)-f(x)],φ(η
1
)=φ(η
2
)=0, 由罗尔定理,存在η∈(η
1
,η
2
)[*](a,b),使得φ’(η)=0, 而φ’(x)=e
-2x
[f’’(x)-3f’(x)+2f(x)]且e
-2x
≠0, 所以f’’(η)-3f’(η)+2f(η)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/JoW4777K
0
考研数学三
相关试题推荐
根据阿贝尔定理,已知(x-x0)n在某点x1(x1≠x0)的敛散性,证明该幂级数的收敛半径可分为以下三种情况:(1)若在x1处收敛,则收敛半径R≥|x1-x0|;(2)若在x1处发散,则收敛半径R≤|x1-x0|;(3)若在x1处条件收敛,则收
证明:
幂级数在收敛区间(-a,a)内的和函数S(x)为_________.
设函数f(x)在[-2,2]上二阶可导,且|f(x)|≤1,又f2(0)+[fˊ(0)]2=4.试证:在(-2,2)内至少存在一点ξ,使得f(ξ)+fˊˊ(ξ)=0.
求微分方程(x>0)的通解.
设随机变量X1,X2,…,X100独立同分布,且EXi=0,DXi=10,i=1,2,…,100,令==_________.
设X的概率密度为,则Y=2X的概率密度为()
以下4个结论:(1)教室中有r个学生,则他们的生日都不相同的概率是;(2)教室中有4个学生,则至少两个人的生日在同一个月的概率是;(3)将C,C,E,E,J,N,S共7个字母随机地排成一行,恰好排成英文单词SCIENCE的概率是;(4)袋中有编号为
判断下列结论是否正确?为什么?(Ⅰ)若函数f(x),g(x)均在x0处可导,且f(x0)=g(x0),则f’(x0)=g’(x0);(Ⅱ)若x∈(x0-δ,x0+δ),x≠x0时f(x)=g(x),则f(x)与g(x)在x=x0处有相同
设则下列矩阵中与A合同但不相似的是
随机试题
房产税的征收范围为城市、县城、建制镇和工矿区,包括农村。()
同肝细胞癌的发生关系不密切的是
在借贷记账法下,账户的贷方应登记( )。
办理个人教育贷款时,贷后与档案管理环节面临的操作风险不包括()。
下列各项中,符合营业税计税依据规定的是()。(2008年)
A公司从银行专门借入一笔款项,于2001年2月1日采用出包方式开工兴建一幢办公楼,2001年10月5日工程按照合同要求全部完工,10月31日下程验收合格,11月10日办理工程竣工结算,11月20日完成全部资产移交手续,12月1日办公楼正式投入使用。则公司专
2011年,四大区域的发展与民生指数,东部地区最高,为69.53%,比上年提高2.50个百分点;东北地区次之,为60.22%,比上年提高2.19个百分点;中部地区和西部地区分别为58.33%和55.41%,分别比上年提高2.73和2.79个百分点。从200
achtundzwanzig+zweiundsechzig=______
Whyisitsodifficulttofallasleepwhenyouareovertired?Thereisnooneanswerthat(1)______toeveryindividual.Butmany
SomemedicalcareispaidbytheU.S.governmentfor______.InAmerica,seriouslyillpatientswill______.
最新回复
(
0
)