首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知随机变量X~N(0,1),求: (Ⅰ)Y=的分布函数; (Ⅱ)Y=eX的概率密度; (Ⅲ)Y=|X|的概率密度.(结果可以用标准正态分布函数Ф(χ)表示)
已知随机变量X~N(0,1),求: (Ⅰ)Y=的分布函数; (Ⅱ)Y=eX的概率密度; (Ⅲ)Y=|X|的概率密度.(结果可以用标准正态分布函数Ф(χ)表示)
admin
2018-11-23
73
问题
已知随机变量X~N(0,1),求:
(Ⅰ)Y=
的分布函数;
(Ⅱ)Y=e
X
的概率密度;
(Ⅲ)Y=|X|的概率密度.(结果可以用标准正态分布函数Ф(χ)表示)
选项
答案
先用定义法求分布函数,而后再求概率密度. (Ⅰ)由题设知Y是离散型随机变量,其概率分布为P{Y=-1}=P{X<1}=Ф(1), P{Y=1}=P{X≥1}=1-P{X<1}=1-Ф(1)=Ф(-1), 故Y的分布函数 F(y)=P{Y≤y}=[*] (Ⅱ)Y=e
X
的分布函数F(y)=P{Y≤y}=P{e
X
≤y},故 当y≤0时,F(y)=0;当y>0时,F(y)=P{X≤lny}=Ф(lny),即 [*] (Ⅲ)Y=|X|的分布函数F(y)=P{|X|≤y},当y<0时,F(y)=0;当y≥0时, F(y)=P{|X|≤y}=P{-y≤X≤y}=Ф(y)-Ф(-y)=2Ф(y)-1, 即F(y)=[*] 所以概率密度 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/U6M4777K
0
考研数学一
相关试题推荐
设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),y的概率分布为P{Y=0}=P{Y=1}=,记FZ(z)为随机变量Z=XY的分布函数,则函数FZ(z)的间断点个数为()
设函数f(x)连续,f’(0)>0,则存存δ>0,使得
求一个正交变换把二次曲面的方程3χ2+5y2+5z2+4χy-4χz-10yz=1化成标准方程.
设f(x)为非负连续函数,且满足f(x)f(x-t)dt=sin4x,求f(x)在[0,]上的平均值.
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
若在区间(0,1)上随机地取两个数u,v,则关于x的一元二次方程x2—2vx+u=0有实根的概率是_________.
设x=2a+b,y=ka+b,其中|a|=1,|b|=2,且a⊥b.若以x和y为邻边的平行四边形面积为6,则k的值为_________.
测得两批电子器材的部分电阻值为:A批:140,138,143,142,144,139;B批:135,140,142,136,135,140.设两批电子器材的电阻均服从正态分布,试在α=0.05下检验这两批电子器材的平均电阻有无显著差异
(11年)设二维随机变量(X,Y)服从正态分布N(μ,μ;σ2,σ2;0),则E(XY2)=______.
随机试题
胬肉治疗方法为
下列属于关节基本构造的结构是
关于某自治州制定的自治条例说法正确的是:()。
某工艺性空调房间尺寸为6.0m×4.0m×3.0m,要求恒温为(20±0.5)℃,房间冷负荷为1200W,湿负荷为0,则送风量为_______m3/h时能满足气流组织要求。
某餐厅设有可坐12人和可坐10人两种规格的餐桌共28张,最多可容纳332人同时就餐,问该餐厅有几张10人桌?()
继承人在遗产处理前没有作出放弃或接受继承表示的,视为()。
甲因走私武器罪被判处15年有期徒刑,剥夺政治权利5年;因组织他人偷越国境罪被判处14年有期徒刑,并处没收财产5万元,剥夺政治权利3年;因犯骗取出口退税罪被判处10年有期徒刑,并处罚金20万元;因招摇撞骗罪被判处管制1年。关于数罪并罚,下列符合《刑法》规定的
Publicfiguressuchasactors,politicians,andathletesdrawmuchattentionfromthepublic;theirage,income,family,marital
ThemostexcitingkindofeducationisalsothemostpersonalNothingcan【1】thejoyofdiscoveringforyourselfsomethingthati
A、Thesecitiesgrowrelativelyslowly.B、Thesecities’growthisparalleltotheirindustrialgrowth.C、Thesecitieshavegrown
最新回复
(
0
)