首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明: 存在ξ∈(0,3),使得f"(ξ)一2 f’(ξ)=0.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明: 存在ξ∈(0,3),使得f"(ξ)一2 f’(ξ)=0.
admin
2016-09-30
72
问题
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫
0
2
f(t)dt=f(2)+f(3).证明:
存在ξ∈(0,3),使得f"(ξ)一2 f’(ξ)=0.
选项
答案
令φ(x)=e
一2x
f’(x),φ(ξ
1
)=φ(ξ
2
)=0, 由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](0,3),使得φ’(ξ)=0, 而φ’(x)=e
2x
[f"(x)一2f’(x)]且e
一2x
≠0,故f"(ξ)一2f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/U8T4777K
0
考研数学三
相关试题推荐
证明下列关系式:A∪B=A∪(B-A)=(A-B)∪(B-A)∪(A∩B).
由概率的公理化定义证明:(1)P()=1-P(A);(2)P(A-B)=P(A)-P(AB).特别地,若A⊃B,则P(A-B)=P(A)-P(B).且P(A)≥P(B);(3)0≤P(A)≤1;(4)P(A∪B)
已知向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5.如果各向量组的秩分别为r(Ⅰ)=r(Ⅱ)=3,r(Ⅲ)=4,证明:向量组α1,α2,α3,α5-α4的秩为4.
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
设f(x)是处处可导的奇函数,证明:对任-b>0,总存在c∈(-b,b)使得fˊ(c)=f(b)/b.
验证下列P(x,y)dx+Q(x,y)dy在整个xOy平面内是某一函数u(x,y)的全微分,并求一个这样的u(x,y):(1)(x+2y)dx+(2x+y)dy;(2)(6xy+2y2)dx+(3x2+4xy)dy;(3)(3x2y+xex)dx+(
洒水车上的水箱是一个横放的椭圆柱体,端面椭圆的长轴长为2m,与水平面平行,短轴长为5m,水箱长4m.当水箱注满水时,水箱一个端面所受的水压力是多少?当水箱里注有一半的水时,水箱一个端面所受的水压力又是多少?
若曲线y=x3+ax2+bx+1有拐点(-1,0),则b=__________.
曲线渐近线的条数为().
随机试题
自动线的控制中,每个运动部件与总线的关系是彼此独立的,互不相干。()
采用函询调查的方式向专家征询意见的方法是()
决定细胞外液渗透压的主要原因是Ca2+。
肺血循环量增多,而左心室和体循环血流减少的疾病是
A.气血阴阳亏虚,心失所养B.邪扰心神,心神不宁C.痰气郁结,蒙蔽神机D.痰火上扰,神明失主E.阳盛阴衰,阴阳失交心悸实证的病机为
课外活动与课堂教学的关系是()。
教师启发学生进行自觉概括的最常用方法是鼓励学生主动参与——。
Youaregoingtoreadalistofheadingsandatextaboutwhatparentsaresupposedtodotoguidetheirchildrenintoadulthood
ThechangesingloballyaveragedtemperaturethathaveoccurredattheEarth’ssurfaceoverthepastcenturyaresimilarinsize
ToliveintheUnitedStatestodayistogainanappreciationforDhrendorf’sassertionthatsocialchangeexistseverywhere.Te
最新回复
(
0
)