首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=ex-∫0x(x-t)f(t)dt,其中f(x)连续,求f(x).
设f(x)=ex-∫0x(x-t)f(t)dt,其中f(x)连续,求f(x).
admin
2021-10-18
24
问题
设f(x)=e
x
-∫
0
x
(x-t)f(t)dt,其中f(x)连续,求f(x).
选项
答案
由f(x)=e
x
-∫
0
x
(x-t)f(t)dt,得f(x)=e
x
-x∫
0
x
f(t)dt+∫
0
x
tf(t)dt,两边对x求导,得f’(x)=e
x
-∫
0
x
f(t)dt,两边再对x求导得f"(x)+f(x)=e
x
,其通解为f(x)=C
1
cosx+C
2
sinax+1/2e
x
,在f(x)=e
2
-∫
0
x
(x-t)f(t)dt中,令x=0得f(0)=1,在f’(x)=e
x/sup>-∫
0
x
f(t)dt中,令x=0得f’(0)=1,于是有C
1
=1/2,C
2
=1/2.故f(x)=1/2(cosx+sinx)+1/2e
x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/UCy4777K
0
考研数学二
相关试题推荐
下列极限存在的是[].
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是()
设f(x),f’(x)为已知的连续函数,则方程y’+f’(x)y=f(x)f’(x)的通解是()
微分方程满足y(1)=0的特解是()
设y(χ)、y(χ)为二阶变系数齐次线性方程y〞+p(χ)y′+q(χ)y=0的两个特解,则C1y1(χ)+C2y2(χ)(C1,C2为任意常数)是该方程通解的充分条件为
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y’’+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为().
微分方程y’’+y=x2+1+sinx的特解形式可设为()
设有方程组(Ⅰ)求方程组(i)与(ii)的基础解系与通解;(Ⅱ)求方程组(i)与(ii)的公共解.
求微分方程χy〞+3y′=0的通解.
求微分方程χy=χ2+y2满足初始条件y(e)=2e的特解.
随机试题
患者,男,12岁。全身水肿一周,发病前曾反复上呼吸道感染,咽痛,咳嗽,发热最高达38.5℃。水肿开始出现于面部,后波及全身。尿少。患儿既往体健,无肝疾病、高血压、慢性胃肠道疾病史。体检可见面部及全身凹陷性水肿,血压130/100mmHg,余未见异常结果。血
心脏无自律性的细胞是
肾小管重吸收受损时,以下蛋白质无法在尿中检出的是
方程z2+y2+z2一4y一1=0表示()。
某新建的中型建设项目,所在的声环境功能区为3类区,建设前后对评价范围内的商场噪声级增高量为7~9dB(A),对评价范围内的居住区噪声级增高量为3~4dB(A),此建设项目声环境影响应按()进行工作。
如果经济纠纷的一方当事人首先选择采取仲裁方式,即使另一方不同意,仲裁组织也应当受理。()
材料:桐庐中学的刘老师在讲解“气候资源与建筑”时,计划从以下几方面进行教学。1.光照与建筑图片展示:桐庐中学新校区效果图。引导提问:体育场有何特点?为何要如此设计?学校周边街道走向如何?又是为什么?总结归纳:要保证建筑物四面都有比较好的光照条件,
下图是一个长方体水箱,上面有一个注水孔,侧面正中有一个排水孔。如果每小时注水30立方分米,侧面小孔平均每小时排水15立方分米,7小时可以注满水箱:若每小时注水45立方分米,几小时可以注满水箱?
在考生文件夹下,有一个资源数据库frdb,该数据库有资源表fr_t、农户表p_t和树种表tree_t三个表。其中,资源表fr_t存储了全乡农民承包的土地编号、户主编号、小地名、面积、树种编号、蓄积(生长在山上的树的木材体积)和承包年度。打开资源数据库frd
—Whataboutthefoodontheplate?—It______delicious.
最新回复
(
0
)