首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[1,+∞)上单调减少且非负的连续函数一∫0nf(x)dx(n=1,2,…). (1)证明: (2)证明:反常积分∫1+∞f(x)dx与无穷级数同敛散.
设f(x)在区间[1,+∞)上单调减少且非负的连续函数一∫0nf(x)dx(n=1,2,…). (1)证明: (2)证明:反常积分∫1+∞f(x)dx与无穷级数同敛散.
admin
2020-03-16
96
问题
设f(x)在区间[1,+∞)上单调减少且非负的连续函数
一∫
0
n
f(x)dx(n=1,2,…).
(1)证明:
(2)证明:反常积分∫
1
+∞
f(x)dx与无穷级数
同敛散.
选项
答案
(1)由f(x)单调减少,故当k≤x≤k+1时, f(k+1)≤f(x)≤f(k). 两边从k到k+1积分,得 ∫
k
k+1
f(k+1)dx≤∫
k
k+1
f(x)dx≤∫
k
k+1
f(k)dx,即 f(k+1)≤∫
k
k+1
f(x)dx≤f(k). [*] 即{a
n
}有下界.又 a
n+1
一a
n
=f(n+1)一∫
n
n+1
f(x)dx≤0, 即数列{a
n
}单调减少,所以[*]存在. (2)由于f(x)非负,所以∫
1
x
f(t)dt为x的单调增加函数.当n≤x≤n+1时,∫
1
n
f(t)dt≤∫
1
x
f(t)dt≤∫
1
n+1
f(t)dt,所以 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Fs84777K
0
考研数学二
相关试题推荐
已知A~B,A2=A,证明B2=B.
设f(x)在[0,+∞)上连续,单调不减且f(0)≥0,试证明函数F(x)=在[0,+∞)上连续且单凋不减(其中n>0).
设函数f(x)连续,且∫0xf(t)dt=sin2x+∫0xtf(x-t)dt.求f(x).
设函数f(x)在x=0的某邻域内具有一阶连续导数,且f(0)f’(0)≠0,当h→0时,若af(h)+bf(2h)-f(0)=o(h),试求a,b的值.
设矩阵A=可逆,向量α=是矩阵A*的一个特征向量,λ是α对应的特征值,其中A*是A的伴随矩阵.试求a、b和λ的值.
设f(χ)=,求f(χ)的间断点,并分类.
设f(χ)=,求f(χ)的间断点并判断其类型.
设f(x)为连续函数,且x2+y2+z2=
设物体由曲面z=x2+y2和z=2x所围成,其上各点的密度μ等于该点到xOy平面的距离的平方.试求该物体对z轴的转动惯量.
随机试题
试述《共同纲领》的内容及其作用。
膏淋实证的治法是
加强了体表与体内、四肢与躯干的向心性联系的是
A.ANAB.抗核糖体RNP抗体C.抗磷脂抗体D.抗Sm抗体E.抗双链DNA抗体系统性红斑狼疮滴度升高提示有肾脏损害的抗体是
已知向量a=μi+5j一k与b=3i+j+λk平行,则()。
企业债的监管机构是()。
按照合同法的规定,( )为被撤销的合同没有约束力的起始时间。
什么是特别风险?特别风险通常与什么有关?从哪些方面考虑特别风险?
英国政府在1870年颁布的()是英国第一个关于初等教育的法案,它标志着国民初等教育制度的正式形成。
《维护互联网安全的决定》规定,有下列行为之一,构成犯罪的,依法追究刑事责任()。
最新回复
(
0
)