首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)为连续函数,证明: (1)∫0πχf(sinχ)dχ=∫0πf(sinχ)dχ=πf(sinχ)dχ; (2)∫02πf(|sinχ|)dχ=4f(sinχ)dχ.
设f(χ)为连续函数,证明: (1)∫0πχf(sinχ)dχ=∫0πf(sinχ)dχ=πf(sinχ)dχ; (2)∫02πf(|sinχ|)dχ=4f(sinχ)dχ.
admin
2019-08-23
74
问题
设f(χ)为连续函数,证明:
(1)∫
0
π
χf(sinχ)dχ=
∫
0
π
f(sinχ)dχ=π
f(sinχ)dχ;
(2)∫
0
2π
f(|sinχ|)dχ=4
f(sinχ)dχ.
选项
答案
(1)令I=∫
0
π
χf(sinχ)dχ,则 I=∫
0
π
χf(sinχ)dχ[*]∫
0
π
(π-t)f(sint)(-dt)=∫
0
π
(π-t)F(sint)dt =∫
0
π
(π-χ)f(sinχ)dχ=π∫
0
π
(sinχ)dχ-∫
0
π
χf(sinχ)dχ-π∫
0
π
f(sinχ)dχ-I, 则l=∫
0
π
χf(sinχ)dχ=[*]∫
0
π
f(sinχ)dχ=π[*]f(sinχ)dχ. (2)∫
0
2π
f(|sinχ|)dχ=∫
-π
π
f(|sinx|)dχ=2∫
0
π
f(|sinχ|)dχ =2∫
0
π
f(sinχ)dχ=4[*]f(sinχ)dχ.
解析
转载请注明原文地址:https://kaotiyun.com/show/QoA4777K
0
考研数学二
相关试题推荐
设λ0为可逆矩阵A的一个特征值,证明λ0≠0,且是A的逆矩阵A一1的一个特征值.是A的伴随矩阵A*的一个特征值.
已知非齐次线性方程组有3个线性无关的解.(1)证明此方程组的系数矩阵A的秩为2.(2)求a,b的值和方程组的通解.
设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且f’(x)>0,如果存在,证明:(1)f(x)>0,x∈(a,b);(2)存在ξ∈(a,b),使得(3)存在与(2)中ξ不同的η∈(a,b),使得f’(η)(b2—a2)=
已知ξ=(0,1,0)T是方程组的解,求通解.
设曲线y=ax2(x≥0,常数a>0)与曲线y=1一x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形D,求D绕x轴旋转一周所成的旋转体的体积V(a);
设区域D={(x,y)|x2+y2≤1,x≥0},计算二重积分
设f(x,y)连续,且f(x,y)=,其中D是由,x=1,y=2所围成的区域,则f(x,y)=______。[img][/img]
设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,且f’(0)=g’(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是()。
设函数f(u)具有二阶连续导数,而z=f(e2siny)满足方程=e2xz,求f(u)。
设y=f(t),u=∫0te—s2,u=g(x),其中f,g均二阶可导且g’(x)≠0,求与。[img][/img]
随机试题
大黄在大黄牡丹汤中的配伍意义是
患者女性,57岁,因“咳嗽、胸闷半月余,加重2天”入院。胸部CT示:右上肺叶外周带占位性病变,纵隔淋巴结肿大、增多,右侧中等量胸腔积液。胸水细胞学可见腺癌细胞。头颅MRI、腹部B超、骨ECT均未发现异常。患者的诊断与分期为
在下列冲突规范中,不属于双边冲突规范的是:()
甲公司与乙公司签订了大米购销合同,合同约定甲公司于2005年8月1日至31日期间向乙公司交付大米100吨,以下说法正确的是()
下列哪些人没有“无外国居留权”的任职资格限制?
以下关于质量控制的解释正确的是()。
在其他条件相同的情况下,考虑资金时间价值时,下列现金流量图中效益最好的是( )。
()是电火花成型加工机床的关键部件。
下表为三个不同地区连续两日日出与日落时刻(北京时间)。三地按纬度由高到低排列正确的是()。
中国用天干地支算年份,若今年为乙丑年,则上一年为()年。
最新回复
(
0
)