首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
以下三个命题: ①若数列{un}收敛于A,则其任意子数列{uni}必定收敛于A; ②若单调数列{xn}的某一子数列{xni}收敛于A,则该数列必定收敛于A; ③若数列{x2n}与{x2n1}都收敛于A,则数列{xn}必定收敛于A. 正确的个数为 (
以下三个命题: ①若数列{un}收敛于A,则其任意子数列{uni}必定收敛于A; ②若单调数列{xn}的某一子数列{xni}收敛于A,则该数列必定收敛于A; ③若数列{x2n}与{x2n1}都收敛于A,则数列{xn}必定收敛于A. 正确的个数为 (
admin
2019-05-15
39
问题
以下三个命题:
①若数列{u
n
}收敛于A,则其任意子数列{u
n
i
}必定收敛于A;
②若单调数列{x
n
}的某一子数列{x
n
i
}收敛于A,则该数列必定收敛于A;
③若数列{x
2n
}与{x
2n1
}都收敛于A,则数列{x
n
}必定收敛于A.
正确的个数为 ( )
选项
A、0
B、1
C、2
D、3
答案
D
解析
对于命题①,由数列收敛的定义可知,若数列{u
n
}收敛于A,则对任意给定的ε>0,存在自然数N,当n>N时,恒有|u
n
-A|<ε.
可知当n
i
>N时,恒有|u
n
-A|<ε.
因此数列{u
n
i
}也收敛于A,可知命题正确.
对于命题②,不妨设数列{x
n
}为单调增加的,即
x
1
≤x
2
≤…≤x
n
≤…,
其中某一给定子数列{x
n
i
}收敛于A,则对任意给定的ε>0,存在自然数N,当n
i
εN时,恒有
|x
n
i
-A|<ε.
由于数列{x
n
}为单调增加的数列,对于任意的n>N,必定存在n
i
≤n≤n
i+1
,有
-ε<x
n
i
-A≤x
n
-A≤x
n
i+1
-A<ε,
从而
|x
n
-A|<ε.
可知数列{x
n
}收敛于A.因此命题正确.
对于命题③,因
,由极限的定义可知,对于任意给定的ε>0,必定存在
自然数N
1
,N
2
:
当2n>N
1
时,恒有|x
2n
-A|<ε;
当2n+1>N
2
时,恒有|x
2n+1
-A|<ε.
取N=max{N
1
,N
2
),则当n>N时,总有|x
n
-A|<ε,因此
.可知命题正确.
答案选D.
转载请注明原文地址:https://kaotiyun.com/show/UEc4777K
0
考研数学一
相关试题推荐
(2005年)如图,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是由线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分
(1998年)确定常数λ,使在右半平面x>0上的向量A(x,y)=2xy(x1+y2)λi一x2(x1+y2!)λj为某二元函数u(x,y)的梯度,求u(x,y).
(2016年)设函数f(x,y)满足且f(0,y)=y+1,Lt是从点(0,0)到点(1,t)的光滑曲线.计算曲线积分并求I(t)的最小值.
(2003年)设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2},证明当t>0时,
(2016年)设函数y(x)满足方程y"+2y’4-ky=0,其中0<k<1.证明:反常积分收敛;
(2000年)微分方程xy"+3y’=0的通解为____________.
(1987年)求幂级数的收敛域,并求其和函数.
三次独立试验中A发生的概率不变,若A至少发生一次的概率为,则一次试验中A发生的概率为___________.
用切比雪夫不等式确定,掷一均质硬币时,需掷多少次,才能保证“正面”出现的频率在0.4至0.6之间的概率不小于0.9.
设f(x),g(x)在点x=0的某邻域内连续,且当x→0时f(x)与g(x)为等价无穷小量,则当x→0时,是的()
随机试题
Itisallverywelltoblametrafficjams,thecostofpetrolandthequickpaceofmodemlife,butmannersontheroadsarebec
下列关于对建设工程投标的管理,说法正确的是()。
混凝土保护层厚度与下列因素无关的是()
接触器适用于控制操作频繁的回路,主要控制对象为( )。
期货投资者保障基金的筹集、管理和使用的具体办法,由()制定。
2008年9月12日人民法院受理了甲公司的破产案件,在受理前乙公司欠甲公司货款150万元尚未归还,人民法院受理甲公司的破产申请后,乙公司受让丙对甲公司的债权300万元。根据企业破产法规定,甲、乙两公司互欠的150万元债权债务可以相互抵销。(
天空出现朝霞,就会下雨;天空出现晚霞,就会放晴。人们由此得出“朝霞不出门,晚霞行千里”的结论。这主要体现思维的()。
材料:组织推选就业标兵活动,一共有三个候选人,第一个是大学毕业生致富解决再就业标兵。其有自主知识产权,且创业成功。第二个是进城务工的农民,在城里学会技术后,回乡带动同乡百姓共同致富,是农民企业家。第三是进城务工的农民工,开了连锁店连锁经营,是致富解决再就业
若函数φ(x)及ψ(x)是n阶可微的,且φ(k)(x0)=ψ(k)(x0),k=0,1,2,…,n一1.又x>x0时,φ(n)(z)>ψ(n)(x).试证:当x>x0时,φ(x)>ψ(x).
•Readthetexttakenfromabusinessmagazine.•Choosethebestsentencetofilleachofthegaps.•Foreachgap(9-14),m
最新回复
(
0
)