首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设F(u,v)有连续偏导数,且满足≠0,其中a,b,c≠0为常数,并有曲面S:F(cχ-az,cy-bz)=0,求证: (Ⅰ)曲面S上点处的法线总垂直于常向量; (Ⅱ)曲面S是以г:=0,为准线.母线平行于l=(a.b.c)的柱面.
设F(u,v)有连续偏导数,且满足≠0,其中a,b,c≠0为常数,并有曲面S:F(cχ-az,cy-bz)=0,求证: (Ⅰ)曲面S上点处的法线总垂直于常向量; (Ⅱ)曲面S是以г:=0,为准线.母线平行于l=(a.b.c)的柱面.
admin
2018-06-12
34
问题
设F(u,v)有连续偏导数,且满足
≠0,其中a,b,c≠0为常数,并有曲面S:F(cχ-az,cy-bz)=0,求证:
(Ⅰ)曲面S上
点处的法线总垂直于常向量;
(Ⅱ)曲面S是以г:
=0,为准线.母线平行于l=(a.b.c)的柱面.
选项
答案
(Ⅰ)令G(χ,y,z)=F(cχ-az,cy-bz),则曲面S的方程是G(χ,y,z)=0,S上[*]点处的法向量是 n=([*])=(cF′
1
,cF′
2
,-aF′
1
-bF′
2
). [*]n.(a,b,C)=0[*]n⊥(a,b,c)[*]S上[*]点的法线总垂直于常向量(a,b,c). (Ⅱ)过曲线г上[*]点(χ
0
,y
0
,0)以l=(a,b,C)为方向向量的直线L的参数方程是 χ=χ
0
+ta,y=y
0
+tb,z=tc, 要证L在S上.在L上, cχ=cχ
0
+tca,cy=cy
0
+tcb,tc=z, cχ=az=cχ
0
,cy-bz=cy
0
, [*]F(cχ-az,cy-bz)=F(cχ
0
,cy
0
)=0, 即L在曲面S上. 另一方面,曲面S上[*]点(χ
0
,y
0
,z
0
): F(cχ
0
-az
0
,cy
0
-bz
0
)=0. 记cχ
0
-az
0
=cχ
*
,cy
0
-bz
0
=cy
*
[*](χ
*
,y
*
,0)在г上即满足 [*] 点(χ
0
,y
0
,z
0
)在过点(χ
*
,y
*
,0)的直线[*]上,它的方向向量是 l=[*]=c(a,b,c), 即S上[*]点(χ
0
,y
0
,z
0
)在过,上相应点(χ
*
,y
*
,0)以l=(a,b,c)为方向向量的直线上. 因此,曲面S是以г为准线,母线平行于(a,b,c)的柱面.
解析
转载请注明原文地址:https://kaotiyun.com/show/UFg4777K
0
考研数学一
相关试题推荐
设f(x)=3u(x)一2v(x),g(x)=2u(x)+3υ(x),并设都不存在.下列论断正确的是()
设平面区域D用极坐标表示为
证明:已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关,如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3.
已知平面上三条不同直线的方程分别为l1=aχ+2by+3c=0,l2=bχ+2cy+3a=0,l3=cχ+2ay+3b=0,试证这三条直线交于一点的充分必要条件为a+b+c=0.
已知方程组,总有解,则λ应满足的条件是_______.
商店出售10台洗衣机,其中恰有3台次品.现已售出一台洗衣机,在余下的洗衣机中任取两台发现均为正品,则原先售出的一台是次品的概率为
设X1,X2,…,Xn是取自总体X的一个简单随机样本,X的概率密度为f(χ;θ)=(Ⅰ)求未知参数θ的矩估计量;(Ⅰ)若样本容量n=400,置信度为0.95,
已知f(x)二阶可导,且f(x)>0,f(x)f’’(x)-[f’(x)]2≥0(x∈R).证明:f(x1)f(x2)≥
用概率论方法证明:
设S为椭球面的上半部分,点P(x,y,z)∈S,π为S在点P处的切平面,ρ(x,y,z)为点O(0,0,0)到平面π的距离,求
随机试题
国家监督抽查的产品,地方不得另行重复抽查,上级监督抽查的产品,下级可以另行重复抽查。()
求极限。
某医师欲采用横断面调查研究的方法,调查高血压病在人群中的分布情况,选择最合适的指标为
利用激光构造深度仪测出的构造深度与铺砂法测试结果不同,两者没有良好的相关关系。()
工程建设其他费用不包括( )。
甲公司与乙运输公司签订了多式联运合同,应甲要求,乙开具了可转让多式联运单据。甲隐瞒了所运物品为危险物等相关信息,也未履行妥善包装的义务,且不久就将这份合同转让给了丙公司。运输期间该物品发生自燃,导致运输工具损毁。对此,下列说法中正确的是()。
某中外合资经营企业的董事会拟对企业章程修改事项作出决议。下列关于该董事会就该事项表决规则中,符合《中外合作经营企业法》规定的是()。
在我国历史上,以“中学为体,西学为用”为指导思想,第一次以法令形式颁布并实施的学制是()
顾颉刚先生对于传说时代的历史提出一个著名的理论,它是()。
A、He’dratherexercisebywalkingthanbyplayingtennis.B、Hedoesn’tliketoworkasmuchashelikestoplaytennis.C、His
最新回复
(
0
)