首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶实对称矩阵,α1=(a,-a,1)T是方程组AX=0的解,α2=(a,1,1-a)T是方程组(A+E)X=0的解,则a=_______.
设A为三阶实对称矩阵,α1=(a,-a,1)T是方程组AX=0的解,α2=(a,1,1-a)T是方程组(A+E)X=0的解,则a=_______.
admin
2019-03-18
26
问题
设A为三阶实对称矩阵,α
1
=(a,-a,1)
T
是方程组AX=0的解,α
2
=(a,1,1-a)
T
是方程组(A+E)X=0的解,则a=_______.
选项
答案
1
解析
因为A为实对称矩阵,所以不同特征值对应的特征向量正交,
因为AX=0及(A+E)X=0有非零解,所以λ
1
=0,λ
2
=-1为矩阵A的特征值,α
1
=(a,-a,1)
T
,α
2
=(a,1,1-a)
T
是它们对应的特征向量,所以有α
1
T
α
2
=a
2
-a+1-a=0,解得a=1.
转载请注明原文地址:https://kaotiyun.com/show/UIV4777K
0
考研数学二
相关试题推荐
已知3阶矩阵A的逆矩阵为A一1=,试求其伴随矩阵A*的逆矩阵.
设函数f(x)在x=2的某邻域内可导,且f’(x)=ef(x),f(2)=1,计算f(n)(2).
设A、B为同阶实对称矩阵,A的特征值全大于a,B的特征值全大于b,a、b为常数,证明:矩阵A+B的特征值全大于a+b.
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
设A、B分别为m、n阶正定矩阵,试判定分块矩阵C=是否为正定矩阵?
设n阶矩阵A≠0,存在某正整数m,使Am=0,证明:A必不相似于对角矩阵.
设α=(α1,α2,…,αn)T是Rn中的非零向量,方阵A=ααT.(1)证明:对正整数m,存在常数t,使Am=tm一1A,并求出t;(2)求一个可逆矩阵P,使P一1AP=Λ为对角矩阵.
设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:(1)在开区间(a,b)内,g(x)≠0.(2)在开区间(a,b)内至少存在一点ξ,使
已知函数y=e2x+(x+1)ex是二阶常系数线性非齐次方程y"+ay’+by=cex的一个特解,试确定常数a,b,c及该方程的通解.
解下列微分方程:(Ⅰ)y"-7y’+12y=x满足初始条件的特解;(Ⅱ)y"+a2y=8cosbx的通解,其中a>0,b>0为常数;(Ⅲ)y"’+y"+y’+y=0的通解.
随机试题
易感宿主是指()
党的十七大报告指出,改革开放以来我国取得一切成绩和进步的根本原因,归结起来就是,开辟了中国特色社会主义道路,形成了( )
半身不遂,口眼喁斜,语言謇涩,小便频数,苔白脉缓者,治宜选用
在某地进行甲型病毒性肝炎的调查中,共发现病人231例。其中男性158例占68.40%,女性73例占31.60%,提示
关于房地产开发企业土地增值税清算,下列说法正确的有()。
注册会计师不需要设计专门程序以支持其对与治理层之间的双向沟通的评价,这种评价可能以建立在为其他目的而实施的审计程序所获取的审计证据的基础上,这些审计证据可能包括()。
矫正对象具有()性格特征。
在讲解“水的组成”一课时,某教师采用了如下导入:俗话说水火不相容。可是,在一望无际的大海上却燃烧起熊熊大火。1977年11月9日,在印度东南部的马德里斯的水域内,发生了一次大火。当时,海上风浪已经接连数日没有停息了,这天,一阵强大的飓风过后,海面上突然燃起
教学的基本组织形式是_______。
下列语句用来设置窗体Forml的属性,其中在运行时不能正确操作的语句是
最新回复
(
0
)