首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)具有任意阶导数,且f’(x)=[f(x)]2,则f(n)(x)= ( )
设函数f(x)具有任意阶导数,且f’(x)=[f(x)]2,则f(n)(x)= ( )
admin
2019-08-12
48
问题
设函数f(x)具有任意阶导数,且f’(x)=[f(x)]
2
,则f
(n)
(x)= ( )
选项
A、n[f(x)]
n+1
B、n![f(x)]
n+1
C、(n+1)[f(x)]
n+1
D、(n+1)![f(x)]
n+1
答案
B
解析
由f’(x)=[f(x)]
2
得
f"(x)=[f’(x)]’=[(f(x))
2
]’=2f(x)f’(x)=2[f(x)]
3
,
这样n=1,2时f
(n)
(x)=n![f(x)]
n+1
成立.假设n=k时,f
(k)
(x)=k![f(x)]
k+1
.则当n=k+1时,有
f
k+1
(x)=[k!(f(x))
k+1
]’=(k+1)![f(x)]
k
f’(x)=(k+1)![f(x)]
k+2
,由数学归纳法可知,结论成立,故选(B).
转载请注明原文地址:https://kaotiyun.com/show/UYN4777K
0
考研数学二
相关试题推荐
设A,B均为n阶矩阵,A有n个互不相同的特征值,且AB=BA,证明:B相似于对角阵.
设向量组(I)α1,α2,…,αs线性无关,(Ⅱ)β1,β2,…,βt线性无关,且αi(i=1,2,…,s)不能由(Ⅱ)β1,β2,…,βt线性表出,βj(j=1,2,…,t)不能由(I)α1,α2,…,αs线性表出,则向量组α1,α2,…,αs,β1,β
函数y=lnx在区间[1,e]上的平均值为____________.
将分解为部分分式乘积的形式为___________.
已知f(x)二阶可导,且f(x)>0,f(x)f"(x)一[f’(x)]2≥0(x∈R),证明:若f(0)=1,则f(x)≥ef’(0)x.
已知求积分
微分方程y’’一3y’+2y=2ex满足的特解为______。
设F(x)可导,下述命题:①F’(x)为偶函数的充要条件是F(x)为奇函数;②F’(x)为奇函数的充要条件是F(x)为偶函数;③F’(x)为周期函数的充要条件是F(x)为周期函数.正确的个数是()
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题:①若Ax=0的解均是Bx=0的解,则r(A)≥r(B);②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则r(A)=r(B);④若r(
随机试题
阅读下列案例,并回答问题。年轻的黄老师每次教完生字后,总是让学生回去把每个生字抄10遍,准备第二天听写,但学生的生字听写成绩总是不理想。黄老师想,肯定是抄写不够,又让学生每个生字抄20遍甚至30遍,但学生的听写成绩仍没有明显提高。黄老师逐渐意识到,学生学习
下列哪项属于子宫内膜的周期性变化
可确诊慢性淋巴细胞白血病的方法是
(抗高血压药物)A、缬沙坦B、吲达帕胺C、美托洛尔D、尼卡地平E、赖诺普利属于血管紧张素转换酶抑制剂的是
2014年下半年,实行标准工时制的甲公司在劳动用工方面发生下列事实:(1)9月5日已累计工作6年且本年度从未请假的杨某向公司提出年休假申请。(2)因工作需要,公司安排范某在国庆期间加班4天,其中占用法定休假日3天,占用周末休息日1天。范某日工资为200
在小学教学评价中,衡量学校办学水平的关键指标是()。
货币制度(浙江财经大学2012真题;东南大学2012真题;华南理工大学2011真题)
Ifyouweretoexaminethebirthcertificatesofeverysoccerplayerin2006’sWorldCuptournament,youwouldmostlikelyfind
Readfivestudents’talksabouttravelingaroundEuropeusinganInter-Railticket.Theticketallowspeopleundertheageoft
Thefactthattheworld’scitiesaregettingmoreandmorecrowdedisawell-documenteddemographicfact.CitiessuchasTokyo
最新回复
(
0
)