首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B均为n阶矩阵,A有n个互不相同的特征值,且AB=BA.证明:B相似于对角矩阵.
设A,B均为n阶矩阵,A有n个互不相同的特征值,且AB=BA.证明:B相似于对角矩阵.
admin
2018-09-25
48
问题
设A,B均为n阶矩阵,A有n个互不相同的特征值,且AB=BA.证明:B相似于对角矩阵.
选项
答案
A有n个互不相同的特征值,故存在可逆矩阵P,使得P
-1
AP=diag(λ
1
,λ
2
,…,λ
n
)= Λ
1
,其中λ
i
(i=1,2,…,n)是A的特征值,且λ
i
≠λ
j
(i≠j). 又AB=BA,故P
-1
APP
-1
BP=P
-1
BPP
-1
AP,即Λ
1
P
-1
BP=P
-1
BPΛ
1
. 设P
-1
BP=(c
ij
)
n×n
,则 [*] 比较对应元素λ
i
c
ij
=λ
j
c
ij
,即(λ
i
-λ
j
)c
ij
=0,λ
i
≠λ
j
(i≠j),得c
ij
=0,于是 P
-1
BP= [*] =Λ
2
,即B~Λ
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/Ueg4777K
0
考研数学一
相关试题推荐
设A=,(A-1)*是A-1的伴随矩阵,则(A-1)*=__________.
设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=
设A.B是n阶矩阵,E—AB可逆,证明E—BA可逆.
设f(x)是区间[-π,π]上的偶函数,且满足证明:f(x)在[-π,π]上的傅里叶级数展开式中系数a2n=0,n=1,2,….
将函数f(x)=sin(x+a)展开成x的幂级数,并求收敛域.
设n维列向量α1,α2,…,αn-1,β线性无关,且与非零向量β1,β2都正交.证明β1,β2线性相关,α1,α2,…,αn-1,β1线性无关.
已知向量β可以由α1,α2,…,αs线性表出,证明:表示法唯一的充分必要条件是α1,α2,…,αs线性无关.
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=kα1,Aα2=lα1+kα2,Aα3=lα2+kα3,l≠0,证明α1,α2,α3线性无关.
已知α1=(1,一1,1)T,α2=(1,t,一1)T,α3=(t,1,2)T,β=(4,t2,一4)T,若β可以由α1,α2,α3线性表出且表示法不唯一,求t及β的表达式.
随机试题
下列不符合原发性肺结核病的描述是
中心型肺癌最早出现征象是
李某,女,24岁。3个月前行清宫术,术后反复小腹坠胀疼痛,喜热恶寒,得热痛缓,经行错后,量少,色暗,带下淋沥,小便频数,舌红,苔白腻,脉沉。
木脂素类多数是游离的,也有少量与糖结合成苷而存在,由于较广泛地存在于植物的木部和树脂中,或开始析出时呈树脂状,故称为木脂素。下列关于木脂素的说法,不正确的是()。
关于鉴定结论,下面说法正确的有:()
下列各项中属于无效背书的是()。
3,4,10,33,()
小说《金陵十三钗》的作者是________。
Thefourgirlsin"TheSisterhoodoftheTravelingPants"makeapact.(46)Havingfoundthemagiceverywomandreamsof,apair
—Isitarecordedfootballmatch?—No,itis______footballmatch.
最新回复
(
0
)