首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.
设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.
admin
2021-11-15
26
问题
设非零n维列向量α,β正交且A=αβ
T
.证明:A不可以相似对角化.
选项
答案
令λ为矩阵A的特征值,X为λ所对应的特征向量,则AX=λX,显然A
2
X=λ
2
X,因为α,β正交,所以A
2
=αβ
T
·αβ
T
=0,于是λ
2
X=0,而X≠0,故矩阵A的特征值为λ
1
=λ
2
=…=λ
n
=0. 又由α,β都是非零向量得A≠0, 因为r(0E-A)=r(A)≥1,所以n-r(0E-A)≤n-1≤n,所以A
2
=αβ
T
·αβ
T
=0,于是λ
2
X=0,而X≠0,故矩阵A的特征值为λ
1
=λ
2
=…=λ
n
=0 因为r(0E-A)=r(A)≥1,所以n-r(0E-A)≤n-1<n,所以A不可相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/Uey4777K
0
考研数学二
相关试题推荐
设f(x)在(0,+∞)内连续且单调减少,证明:.
设f’(x)在[0,1]上连续且|f’(x)|≤M.证明:.
设,问a,b,c为何值时,矩阵方程AX=B有解?有解时求出全部解。
证明:r(AB)≤min{r(A),r(B)}.
设.求(I)(II)的基础解系。
设A是m×n矩阵,B是n×m矩阵,则()。
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等。证明:|A|≠0.
设A是正交矩阵,且|A|<0,证明:|E+A|=0.
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T.求A。
设四阶矩阵A=(α1,α2,α3,α4),方程组Ax=B的通解为(1,2,2,1)T+c(1,﹣2,4,0)T,c为任意常数。记B=(α3,α2,α1,β-α4),求Bx=α1-α2的通解。
随机试题
A.标志透明带的出现B.由初级卵母细胞和单层扁平的卵泡构成C.由初级卵母细胞完成第一次减数分裂后形成D.自胎儿期至生殖期均可出现,青春期开始时仅为30万~40万个E.由卵丘形成原始卵泡
关于第一产程处理,下列哪项不对
腰椎斜位标准片所见,错误的是
确诊风湿热的次要表现哪一项是错误的
新生儿败血症的治疗,哪项不正确
根据《合同法》,以下说法错误的是()。
石渣面层抹灰压实后尽量保证石渣大面朝上,并宜高于分格条( )。
【2018下】中国古琴有着悠久的历史,在古代文化生活中占有重要地位。下列选项中,不属于中国古琴名曲的是()。
人类最早的造型艺术产生于________,即距今三万到一万多年之间。
A、Inthemorning.B、Atnoon.C、Intheevening.D、Atnight.C
最新回复
(
0
)