首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维非零向量a不是二阶方阵A的特征向量。 若A2a+Aa-6a=0,求A的特征值,讨论A是否可对角化。
设二维非零向量a不是二阶方阵A的特征向量。 若A2a+Aa-6a=0,求A的特征值,讨论A是否可对角化。
admin
2019-09-29
73
问题
设二维非零向量a不是二阶方阵A的特征向量。
若A
2
a+Aa-6a=0,求A的特征值,讨论A是否可对角化。
选项
答案
由A
2
a+Aa-6a=0,得(A
2
+A-6E)a=0,因为a≠0,所以r(A
2
+A-6E)<2,从而∣A
2
+A-6E∣=0,即 ∣3E+A∣·∣2E-A∣=0,则∣3E+A∣=0或∣2E-A∣=0。 若∣3E+A∣≠0,则3E+A可逆,由(3E+A)(2E-A)a=0得(2E-A)a=0,即Aa=2a,与已知矛盾; 若∣2E-A∣≠0,则2E-A可逆,由(2E-A)(3E+A)a=0,得(3E+A)a=0,即Aa=-3a,与已知条件矛盾,所以有∣3E+A∣=0且∣2E-A∣=0,于是二阶矩阵A由两个特征值-3,2,故A可对角化。
解析
转载请注明原文地址:https://kaotiyun.com/show/mUA4777K
0
考研数学二
相关试题推荐
已知A是3阶矩阵,r(A)=1,则λ=0()
设向量组(I):α1,α2,…,αr可由向量组(Ⅱ):β1,β2,…,βs线性表示,则()
设A为m×n矩阵,B为n×m矩阵,且m>n,则必有()
设f(x)有二阶连续导数,且则()
设A,B都是n阶矩阵,其中B是非零矩阵,且AB=O,则().
设f(x)是连续函数,并满足∫f(x)sinxdx=cos2x+C,又F(x)是f(x)的原函数,且满足F(0)=0,则F(x)=______.
假设:①函数y=f(x)(0≤x≤+∞)满足条件f(0)=0和0≤f(x)≤ex一1;②平行于y轴的动直线MN与曲线y=f(x)和y=ex一1分别相交于点P1和P2;③曲线y=f(x),直线MN与x轴所围成的封闭图形的面积S恒等于线段P1P2的长度。
已知下列非齐次线性方程组(I),(II):(1)求解方程组(I),用其导出组的基础解系表示通解;(2)当方程组中的参数m,n,t为何值时,方程组(I)与(Ⅱ)同解?
设齐次线性方程组其中a≠0,6≠0,n≥2.试讨论a,b为何值时,方程组仅有零解,有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
求二元函数z=f(x,y)=x2y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
随机试题
用单角铣刀兼铣齿槽齿背时,当计算出转角Φ的数值后,还须换算成(),以便操作使用。
初步鉴定肠道致病菌与非肠道菌常用的试验是
依据《中华人民共和国文物保护法》,工程设计方案应当根据()经相应文物行政部门同意后,报城乡建设规划部门批准。
将现金存入银行的业务,应根据()登记现金日记账的支出栏。
某公司进口圆钢一批,成交价格为CIF天津USD1000。已知外汇牌价为USD100=850人民币,关税税率为10%,增值税税率为17%。海关于1998年9月1日填发税款缴款书,该公司于1998年9月17日缴款,请指出计算错误的滞纳金金额是()
根据外汇管理法律制度的规定,下列表述中。不正确的是()。
劳动合同的种类不包括()。
最古老、适用范围最广的课程类型是______。
与其他许多灵长目动物一样,梳理毛发对狮尾狒来说不仅仅与清洁有关,这也是它们建立关系的方式。狮尾狒的生活中充斥着_______,这里有阴谋团体、有篡权政变、还有帮派结盟。它们通过为彼此剔除毛发中的寄生虫、揉捏皮肤来巩固交情。填入划横线部分最恰当的一项是:
某学校初中二年级五班的物理老师要求学生两人一组制作一份物理课件。小曾与小张自愿组合,他们制作完成的第一章后三节内容见文档“第3—5节.pptx”,前两节内容存放在文本文件“第1—2节.pptx”中。小张需要按下列要求完成课件的整合制作:将演示文稿“第3
最新回复
(
0
)