首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=x12+4x22+x32+2ax1x2+2bx1x3+2cx2x3的矩阵A满足AB=B,其中B=.用正交变换化二次型为标准形,并写出所用正交变换.
设二次型f(x1,x2,x3)=x12+4x22+x32+2ax1x2+2bx1x3+2cx2x3的矩阵A满足AB=B,其中B=.用正交变换化二次型为标准形,并写出所用正交变换.
admin
2017-07-26
40
问题
设二次型f(x
1
,x
2
,x
3
)=x
1
2
+4x
2
2
+x
3
2
+2ax
1
x
2
+2bx
1
x
3
+2cx
2
x
3
的矩阵A满足AB=B,其中B=
.用正交变换化二次型为标准形,并写出所用正交变换.
选项
答案
由AB=B知,矩阵B的每一列α
i
满足Aα
i
=α
i
(i=1,2,3).显然B的第1,2列α
1
=[*]线性无关,所以λ=1是矩阵A的特征值(至少是二重),α
1
,α
2
是λ=1的线性无关的特征向量.根据1+1+λ
3
=1+4+1,故知矩阵A有特征值λ
3
=4.因此,矩阵A的特征值是1,1,4. 设λ
3
=4的特征向量为α
3
=(x
1
,x
2
,x
3
)
T
,那么由实对称矩阵不同特征值的特征向量相百正交,有 [*] 解出α
3
=(1,2,一1)
T
. 对α
1
,α
2
正交化,令β
1
=α
1
=(1,0,1)
T
,则 [*] 令Q=[η
1
,η
2
,η
3
].则由正交变换X=Qy,二次型可化为标准形f=y
1
2
+y
2
2
+4y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/UgH4777K
0
考研数学三
相关试题推荐
[*]
设A是n阶反对称矩阵,举一个4阶不可逆的反对称矩阵的例子;
设y(x)为微分方程y’’-4y’+4y=0满足初始条件y(0)=0,y’(0)=2的特解,则∫01y(x)dx=__________.
设f(x)在开区间(a,b)内连续,并且,证明f(x)在(a,b)内有零点.
设A为3阶矩阵,P为3阶可逆矩阵,且若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=().
设b为常数.求曲线L:的斜渐近线l的方程;
设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=.(1)记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式;(2)二次型g(x)=XTAX是否与f(x1,x2,…,xn)合同?
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵). 求:(1)二次型XTAX的标准形;(2)|E+A+A2+…+An|的值.
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证:必存在ξ∈(0,3),使f’(ξ)=0.
随机试题
在折光系统中,最主要的折光发生在
A、甲苯磺丁脲B、盐酸二甲双胍C、瑞格列奈D、伏格列波糖E、胰岛素胰岛素增敏剂
属于水利工程施工项目招标程序的有()。
公司经营周期的变化(包括暂时的和永久的)必然会要求企业增加额外的现金。通常,应收账款、存货的减少以及应付账款的增加将形成企业的借款需求。()
利润表中对主营业务利润与其他业务利润所作详细程度不同的反映,体现了()。
“施里芬计划”
A、 B、 C、 D、 E、 A
(2011下项管)某项目经理张先生在确定项目范围过程中,已得到项目章程、工作说明书、企业环境因素和组织过程资产等信息,他立刻组织项目团队管理人员,并聘请有关专家,采用项目管理信息系统、项目管理方法论等工具,确定项目需要完成的工作,在上述工作结束后,相应的输
软件工程的出现是由于【】。
Whenapersonisinahappyframeofmind,hemayagreeonthethingthathewon’ttolerate______.whenheisnotintheright
最新回复
(
0
)