首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=x12+4x22+x32+2ax1x2+2bx1x3+2cx2x3的矩阵A满足AB=B,其中B=.用正交变换化二次型为标准形,并写出所用正交变换.
设二次型f(x1,x2,x3)=x12+4x22+x32+2ax1x2+2bx1x3+2cx2x3的矩阵A满足AB=B,其中B=.用正交变换化二次型为标准形,并写出所用正交变换.
admin
2017-07-26
53
问题
设二次型f(x
1
,x
2
,x
3
)=x
1
2
+4x
2
2
+x
3
2
+2ax
1
x
2
+2bx
1
x
3
+2cx
2
x
3
的矩阵A满足AB=B,其中B=
.用正交变换化二次型为标准形,并写出所用正交变换.
选项
答案
由AB=B知,矩阵B的每一列α
i
满足Aα
i
=α
i
(i=1,2,3).显然B的第1,2列α
1
=[*]线性无关,所以λ=1是矩阵A的特征值(至少是二重),α
1
,α
2
是λ=1的线性无关的特征向量.根据1+1+λ
3
=1+4+1,故知矩阵A有特征值λ
3
=4.因此,矩阵A的特征值是1,1,4. 设λ
3
=4的特征向量为α
3
=(x
1
,x
2
,x
3
)
T
,那么由实对称矩阵不同特征值的特征向量相百正交,有 [*] 解出α
3
=(1,2,一1)
T
. 对α
1
,α
2
正交化,令β
1
=α
1
=(1,0,1)
T
,则 [*] 令Q=[η
1
,η
2
,η
3
].则由正交变换X=Qy,二次型可化为标准形f=y
1
2
+y
2
2
+4y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/UgH4777K
0
考研数学三
相关试题推荐
已知yt=3et是差分方程yt-1+ayt-1=et的一个特解,则a=__________.
甲、乙两地相距skm,汽车从甲地匀速地行驶到乙地,已知汽车每小时的运输成本(以元为单位)由可变部分与固定部分组成:可变部分与速度(单位为km/h)的平方成正比,比例系数为b;固定部分为a元.试问为使全程运输成本最小,汽车应以多大速度行驶?
当x→0时,f(x)=x-sinax与g(x)=x2ln(1-bx)是等价无穷小,则
设A是n阶矩阵,且A的行列式|A|=0,则A().
设线性方程组的系数矩阵为A,三阶矩阵B≠0,且AB=0,试求λ值.
下列矩阵中能与对角矩阵相似的是().
设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B-C为_____.
x)在(一∞,+∞)上连续,且f(x)=∫0xf(t)出,试证:f(x)=0(-∞<x<+∞).
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证:必存在ξ∈(0,3),使f’(ξ)=0.
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f(0)+[f2(0)]2=4.试证:在(一2,2)内至少存在一点ξ,使得f"(ξ)+f"(ξ)=0.
随机试题
婴儿出现(),如出血位置无法压迫,可让婴儿躺下,用拳头或手掌根部把出血的血管压向对侧的骨头方向。
常见的肛周脓肿是
治疗阴虚内热型内伤发热的首选方剂是
可能的诊断是若需要应采取的正确预防措施是
喜欢买报纸的人、常常________于报刊亭的人必然有着阅读的兴趣并养成了习惯,这样的行为不仅影响着个人的生活,也在________中影响着他人。将报刊亭打造成一个公共的阅读空间,就像现在随处可见的自助K歌房一样,这种________又便捷的阅读点,激发的
典型欠阻尼二阶系统超调量大于5%,则其阻尼ξ的范围为()。
从各国保险立法来看,关于投保人或被保险人的告知方式一般分为以下两种,即()。
某企业2011年年底“应付账款”科目月末贷方余额20000元,其中:“应付甲公司账款”明细科目贷方余额15000元,“应付乙公司账款”明细科目贷方余额5000元;“预付账款”科目月末贷方余额10000元,其中:“预付账款——甲工厂”明细科目贷方余额
Manystudentsfindtheexperienceofattendinguniversitylecturestobeareallyconfusingand【C1】______experience.Thelecture
Ithasbeenproventhatshortburstsofconcentrationrepeatedfrequentlyaremuchmore【B1】______thanonelongperiod.So,even
最新回复
(
0
)