首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在区间[1,+∞)上连续,若曲线y=f(x)与直线x=1,x=t(t>1)及x轴所围平面图形绕x轴旋转一周所得旋转体体积为,求f(x)满足的微分方程,并求满足初值的解。
设函数f(x)在区间[1,+∞)上连续,若曲线y=f(x)与直线x=1,x=t(t>1)及x轴所围平面图形绕x轴旋转一周所得旋转体体积为,求f(x)满足的微分方程,并求满足初值的解。
admin
2019-01-15
122
问题
设函数f(x)在区间[1,+∞)上连续,若曲线y=f(x)与直线x=1,x=t(t>1)及x轴所围平面图形绕x轴旋转一周所得旋转体体积为
,求f(x)满足的微分方程,并求满足初值
的解。
选项
答案
由题设可得 [*] 即[*] 等式两边同时对t求导,得 3f
2
(t)=2tf(t)+t
2
f
’
(t), 即f(x)所满足的微分方程x
2
f
’
(x)+2xf(x)=3f
2
(x)。 记y=f(t),则有 [*] 这是关于y,t的齐次方程,令[*],则方程化为 [*] 即有 [*] 两端积分得In︱u-1︱-In︱u︱=3In︱t︱+In︱C︱, 即有 [*] 即有 [*] 于是[*]。由[*],得C=-1,因此所求特解为[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/UoP4777K
0
考研数学三
相关试题推荐
(87年)设D是由曲线y=χ3与直线y=χ在第一象限内围成的封闭区域,求dχdy.
(99年)设向量β可由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则【】
(03年)设f(χ)为不恒等于零的奇函数,且f′(0)存在,则函数g(χ)=【】
(99年)设函数f(χ)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f()=1.试证(1)存在η∈(,1),使f(η)=η.(2)对任意实数λ,必存在ξ∈(0,η),使得f′(ξ)-λ[f(ξ)-ξ]=1
(94年)假设f(χ)在[α,+∞)上连续,f〞(χ)在(a,+∞)内存在且大于零,记F(χ)=(χ>a).证明:F(χ)在(a,+∞)内单调增加.
(02年)设A是m×n矩阵,B是n×m矩阵,则线性方程组(AB)χ=0【】
(08年)设n元线性方程组Aχ=b,其中(Ⅰ)证明行列式|A|(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求χ1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
(02年)设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
(88年)已给线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多解?在方程组有无穷多解的情形下,试求出一般解.
求下列级数的和(1)=_______;(2)=_______;(3)=_______;(4)=_______.
随机试题
节后纤维
嘌呤核苷酸分解代谢的终产物是
虚劳病名,首见于
国务院银行业监督管理机构有权监管的是()
建设工程项目在施工总承包管理模式下,分包合同价对()是透明的。
正在服刑的罪犯如实供述司法机关还未掌握的本人其他罪行的,以自首论。()
某地房价过高,过高房价并非好事,这背后隐藏着一些不合理的东西。据此,有四个推论:(1)有些地方高房价是合理的;(2)不合理的东西引起高房价;(3)高房价引起不合理现象;(4)并非仅仅是某地房价高。以上推论,
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
写出下列六个省市的一个字的简称正确的一组;①河北②河南③湖北④安徽⑤贵州⑥江西
据报道,某国科学家在一块60万年前来到地球的火星陨石上发现了有机生物的痕迹,因为该陨石由二氧化碳化合物构成,该化合物产生于甲烷,而甲烷可以是微生物受到高压和高温作用时产生的。由此可以推断火星上曾经有过生物,甚至可能有过像人一样的高级生物。以下条件除了哪项外
最新回复
(
0
)