首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(99年)设函数f(χ)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f()=1.试证 (1)存在η∈(,1),使f(η)=η. (2)对任意实数λ,必存在ξ∈(0,η),使得f′(ξ)-λ[f(ξ)-ξ]=1
(99年)设函数f(χ)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f()=1.试证 (1)存在η∈(,1),使f(η)=η. (2)对任意实数λ,必存在ξ∈(0,η),使得f′(ξ)-λ[f(ξ)-ξ]=1
admin
2017-05-26
28
问题
(99年)设函数f(χ)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(
)=1.试证
(1)存在η∈(
,1),使f(η)=η.
(2)对任意实数λ,必存在ξ∈(0,η),使得f′(ξ)-λ[f(ξ)-ξ]=1
选项
答案
(1)令φ(χ)=f(χ)-χ,则φ(χ)在[0,1]上连续.又φ(1)=-1<0,[*]>0,由介值定理可知,存在η∈([*],1),使得φ(η)=f(η)-η=0 即f(η)=η (2)要证f′(ξ)-λ[f(ξ)-ξ]=1,即要证 [f′(ξ)-1]-λ[f(ξ)-ξ]=0 也就是要证φ′(ξ)-λφ(ξ)=0,因此构造辅助函数 F(χ)=e
-λχ
φ(χ)=e
-λχ
[f(χ)-χ] 则F(χ)在[0,η]上满足罗尔定理的条件,故存在ξ∈(0,η).使得F′(ξ)=0. 即e
-λξ
[φ′(ξ)-λφ(ξ)]=0 而e
-λξ
≠0,从而有φ′(ξ)-λφ(ξ)=0 即f′(ξ)-λ[f(ξ)-ξ]=1
解析
转载请注明原文地址:https://kaotiyun.com/show/PCH4777K
0
考研数学三
相关试题推荐
将周长为2p的矩形绕它的一边旋转得一圆柱体,问矩形的边长各为多少时,所得圆柱体的体积为最大?
有外形相同的球分装3个盒子,每盒10个球.其中第一个盒子中有7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子则有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一球,若取得标有字母A的球,则在第二个盒子中任取一球;
设四阶方阵A满足条件|3E+A|=0,AAT=2E,|A|
已知随机变量X的方差大于0,且Y=2X+1,cov(X,Y)=4,则D(X)=_____.
设X、Y为两相互独立的随机变量,则①E(XY)=E(X)E(Y),②D(X—Y)=D(X)+D(Y),③D(XY,)=D(X)D(Y),④cov(X,Y)=0中一定成立的是().
设二随机变量(X,Y)服从二维正态分布,则随机变量U=X+Y,与V=X一Y,不相关的充分必要条件为().
设随机变量X与Y服从正态分布,X~N(μ,42),Y一N(μ,52),记p1=P{x≤μ一4},p2=P{y≥μ+5},则().
设X1,X,…,Xn为来自总体N(μ,σ2)的简单随机样本,为样本均值,记则服从自由度为n-1的t分布的随机变量是().
设f(t)(t≥0)为连续函数,则由下式确定的函数F称为f的拉普拉斯变换:其中F的定义域为所有使积分收敛的s的值的集合,试求出下列函数的拉普拉斯变换:(1)f(t)=1;(2)f(t)=el;(3)f(t)=t.
假设随机变量X在区间[-1,1]上均匀分布,则U=arcsinX和V=arccosX的相关系数等于
随机试题
(2012年04月)宣传作为一种促销工具,具有哪些重要作用?
已产4胎的高产奶牛,分娩后1天突然发生全身肌肉初期震颤,但很快出现全身肌肉松弛无力、四肢瘫痪、四肢位于腹下,头向后弯与胸侧,神智昏迷,各种感觉反射降低或丧失、体温降低,心跳快弱,病急、病程短,不治疗或治疗不当死亡率高。治疗的特效方法()。
患者车祸后2小时送至医院,诉咳嗽,胸部疼痛。查T36.5℃,P130次/分,R30次/分,BP90/60mmHg,神志清晰,右胸部压痛明显,右肺呼吸音低,右下肢有骨折征。胸片示:右侧液气胸。创伤的种类是
风湿病增生期最具特征性的病理变化是()
当评估的重大错报风险为低水平时.注册会计师是否就可以不对重大的交易、账户余额和披露设计和实施实质性程序?
李琳在A公司已经工作了13年,从行政秘书开始,历经行政专员、行政主管、行政部副经理。在几个月前的内部招聘中,李琳竞聘行政部经理,但由于能力欠缺,未能胜出。(1)针对李琳目前处境,人力资源部的职业生涯管理任务是什么?(2)李琳希望下一步能竞聘
如图是一个有n层(n≥2)的六边形点阵。它的中心是一个点,算作第一层,第2层每边有2个点,第3层每边有3个点,……,第n层每边有n个点,则这个点阵的点数共有___________个。
社会工作者陈莲从事房屋拆迁方面的工作,在工作中,她运用了社会策划模式设计社区发展计划。陈莲收集了环境发展趋势资料,了解对计划有影响力的人士和团体,分析他们的利益和需要、他们与计划的关系及对计划的期望和要求,她这样做的目的是()。
童话故事《木偶奇遇记》中,木偶人匹诺曹一撒谎。鼻子就会变长,谎话显而易见。现实生活中,虽然说谎话时我们的鼻子不会变长,但我们身体确实也会产生一些细微的生理变化,有的通过肉眼就可以观察到,有的则要通过精密的测谎仪器才测试出来。日前,美国犹他州大学的科学家研发
有如下程序:intx=3;do{x一=2;cout<<x,}while(!(一x));执行这个程序的输出结果是()。
最新回复
(
0
)