首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2,…,an是n个互不相同的数,b1,b2,…,bn是任意一组给定的数,证明:存在唯一的多项式 f(x)=C0xn—1+C1xn—2+…+Cn—1,使得f(ai)=bi(i=1,2,…,n).
设a1,a2,…,an是n个互不相同的数,b1,b2,…,bn是任意一组给定的数,证明:存在唯一的多项式 f(x)=C0xn—1+C1xn—2+…+Cn—1,使得f(ai)=bi(i=1,2,…,n).
admin
2017-07-26
98
问题
设a
1
,a
2
,…,a
n
是n个互不相同的数,b
1
,b
2
,…,b
n
是任意一组给定的数,证明:存在唯一的多项式
f(x)=C
0
x
n—1
+C
1
x
n—2
+…+C
n—1
,使得f(a
i
)=b
i
(i=1,2,…,n).
选项
答案
设f(x)=C
0
x
n—1
+C
1
x
n—2
+…+C
n—1
即是该多项式,则有 [*] 上述非齐次线方程组因为其系数行列式为n阶范德蒙行列式,又因a
1
,a
2
,…,a
n
互不相同,故D
n
=V
n
≠0,由克莱姆法则知方程组存在唯一解(C
0
,C
1
,C
n—1
),故存在唯一的多项式f(x),使得f(a
i
)=b
i
(i=1,2,…,n).
解析
转载请注明原文地址:https://kaotiyun.com/show/UrH4777K
0
考研数学三
相关试题推荐
证明:方程x=a+bsinx(其中a>0,b>0)至少有一个正根,并且它不超过a+b.
向量组α1,α2,…,αm线性无关的充分必要条件是________.
确定常数a,使向量组α1=(1,1,a)T,α2=(1,n,1)T,α3=(a,1,1)T可由向量组β1=(1,l,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
设f(t)(t≥0)为连续函数,则由下式确定的函数F称为f的拉普拉斯变换:其中F的定义域为所有使积分收敛的s的值的集合,试求出下列函数的拉普拉斯变换:(1)f(t)=1;(2)f(t)=el;(3)f(t)=t.
计算二重积分,其中D是由直线x=-2,y=0,y=2以及曲线所围成的平面区域.
设在某一时间段内进入某大型超市的顾客人数X服从参数为A的泊松分布,且每一顾客购买A类商品的概率为p.假定各顾客是否购买A类商品是相互独立的,求进入该超市的顾客购买A类商品的人数Y的概率分布及Y的期望EY.
用配方法化下列二次型为标准形:f(x1,x2,x3)=2x1x2+2x1x3+6x2x3.
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设,求方程组AX=b的通解.
设A是n阶矩阵,λ是A的特征值,其对应的特征向量为X,证明:λ2是A2的特征值,X为特征向量.若A2有特征值λ,其对应的特征向量为X,X是否一定为A的特征向量?说明理由.
随机试题
Afewminutesago,walkingbackfromlunch,IstartedtocrossthestreetwhenIheardthesoundofacoindropping.Itwasn’tm
桂枝汤原方服法要求“服已须臾,啜热稀粥一升余”,其主要的目的是
滑精是指
氯丙嗪对体温调节的影响具有什么特点:
对急腹症病人疼痛的护理错误的是
A.7%B.8%C.10%D.15%E.60%响人类寿命的因素中,医疗占()。
美国人本主义心理学家马斯洛认为()。
请在【答题】菜单下选择【进入考生文件夹】命令,并按照题目要求完成下面的操作。注意:以下的文件必须都保存在考生文件夹下。财务部助理小王需要协助公司管理层制作本财年的年度报告,请你按照如下需求完成制作工作。(1)打开“Wo
Itissimpleenoughtosaythatsincebookshaveclasses—fiction,biography,poetry—weshouldseparatethemandtakefromeachw
A、Bypayingforhissinglemeals.B、Byorderingtakeoutfood.C、Byorderinghismealsinadvance.D、Bypurchasingaweekendmeal
最新回复
(
0
)