设f(x)二阶连续可导且满足f "(x)+f’2(x) -2x,且f’(0)=0,则( ).

admin2022-06-30  37

问题 设f(x)二阶连续可导且满足f "(x)+f’2(x) -2x,且f’(0)=0,则(          ).

选项 A、x=0为f(x)的极大值点
B、x=0为f(x)的极小值点
C、(0,f(0))为曲线y=f(x)的拐点
D、x=0既非f(x)的极值点,(0,f(0))也非y=f(x)的拐点

答案C

解析 取x=0得f"(0)=0.
    由f"(x)+f’2(x)=2x得f"’(x)+2f’(x)f"(x)=2,从而f"’(0)=2.
    因为f"’(0)==2>0,所以存在δ>0,当0<|x|<δ时,
    从而故(0,f(0))为曲线y=f(x)的拐点,应选C.
转载请注明原文地址:https://kaotiyun.com/show/V1f4777K
0

最新回复(0)