首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是连续函数,F(x)是f(x)的一个原函数,则( )
设f(x)是连续函数,F(x)是f(x)的一个原函数,则( )
admin
2020-03-01
48
问题
设f(x)是连续函数,F(x)是f(x)的一个原函数,则( )
选项
A、当f(x)是奇函数时,F(x)必为偶函数.
B、当f(x)是偶函数时,F(x)必为奇函数.
C、当f(x)是周期函数时,F(x)必为周期函数.
D、当f(x)是单调函数时,F(x)必为单调函数.
答案
A
解析
先考虑奇偶性:因为F(x)=∫
0
x
f(t)dt+C,所以F(一x)=∫
0
-x
f(t)dt+C.
令u=-t,∫
0
-x
f(t)dt+C=∫
0
x
f(一u)d(一u)+C=一∫
0
x
f(一u)du+C
当f(x)是奇函数时,f(一u)=-f(u),从而有
F(一x)=∫
0
x
f(u)du+C=F(x),即F(x)必为偶函数,故应选(A).
(B)的反例:偶函数f(x)=cosx,F(x)=sin x+1不是奇函数;
(C)的反例:周期函数f(x)=cos
2
x,F(x)=
不是周期函数;
(D)的反例:(一∞,+∞)内的单调函数f(x)=x,
在(一∞,+∞)内不是单调函数.
综上可知应选(A).
转载请注明原文地址:https://kaotiyun.com/show/hwA4777K
0
考研数学二
相关试题推荐
设(2E—C-1B)AT=C-1,其中E是四阶单位矩阵,AT是矩阵A的转置矩阵,则A=________。
设f(χ)=,则=_______.
设二阶实对称矩阵A的一个特征值为λi=1,属于λ1的特征向量为(1,一1)T,若|A|=一2,则A=________。
设三元二次型x12+x22+5x32+2tx1x2-2x1x3+4x2x3是正定二次型,则t∈________.
设ξ1=(2,-1,-1,0)T和ξ2=(t,1-t,0,-1)T是4元齐次方程组(Ⅰ)的一个基础解系,方程组(Ⅱ)为已知(Ⅰ)和(Ⅱ)有公共的非零解,p=______,t=_______全部公共解_________.
设f(x)为连续函数,且F(x)=f(t)dt,则F’(x)=___________.
设a是非零常数,则
设y(x)是方程y(4)一y"=0的解,且当x→0时,y(x)是x的3阶无穷小,求y(x).
[2004]设f(x)为连续函数,F(t)=∫1tdy∫ytf(x)dx,则F′(2)等于().
[2007年]如图1.3.2.2所示,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]上的图形分别是直径为2的下、上半圆周,设F(x)=∫0xf(t)dt,则下列结论正确的是(
随机试题
Mostyoungpeopleenjoysomeformsofphysicalactivity.Itmaybewalking,cycling,swimming,orinwinter,skatingorskiing.
女,48岁,严重烧伤,于上午8时开始输液共3600ml,每分钟滴注90滴。请估计何时完成输液()。
门诊发现传染病患者时,应立即采取的措施是
甲状腺功能减退的病人可见面容为( )
下列建筑钢材性能指标中,不属于工艺性能的有()。
孩子尿裤子回家,家长来园中质疑,您会怎么处理?
人民检察院受理同级公安机关移送审查起诉的案件,认为按照管辖规定应当由其他同级人民检察院起诉的,受理案件的该人民检察院应当()。
在过去60年中,现代中国的建设走过一条_______的道路,经历过无数艰辛、动荡、摇摆与反复,既有山重水复之_______,也有柳暗花明之转机。依次填入画横线部分最恰当的一项是()。
(2013年真题)2012年6月,我国完成了铁路运输法院移交地方的改革工作。对此,下列说法正确的有
—Lookatthenotebelow.—Youwillhearatalkbetweentwomen.Tuesday5NovemberTasks1.AskDr.Rae
最新回复
(
0
)