首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是连续函数,F(x)是f(x)的一个原函数,则( )
设f(x)是连续函数,F(x)是f(x)的一个原函数,则( )
admin
2020-03-01
71
问题
设f(x)是连续函数,F(x)是f(x)的一个原函数,则( )
选项
A、当f(x)是奇函数时,F(x)必为偶函数.
B、当f(x)是偶函数时,F(x)必为奇函数.
C、当f(x)是周期函数时,F(x)必为周期函数.
D、当f(x)是单调函数时,F(x)必为单调函数.
答案
A
解析
先考虑奇偶性:因为F(x)=∫
0
x
f(t)dt+C,所以F(一x)=∫
0
-x
f(t)dt+C.
令u=-t,∫
0
-x
f(t)dt+C=∫
0
x
f(一u)d(一u)+C=一∫
0
x
f(一u)du+C
当f(x)是奇函数时,f(一u)=-f(u),从而有
F(一x)=∫
0
x
f(u)du+C=F(x),即F(x)必为偶函数,故应选(A).
(B)的反例:偶函数f(x)=cosx,F(x)=sin x+1不是奇函数;
(C)的反例:周期函数f(x)=cos
2
x,F(x)=
不是周期函数;
(D)的反例:(一∞,+∞)内的单调函数f(x)=x,
在(一∞,+∞)内不是单调函数.
综上可知应选(A).
转载请注明原文地址:https://kaotiyun.com/show/hwA4777K
0
考研数学二
相关试题推荐
设n阶矩阵A的秩为n一2,α1,α2,α3是非齐次线性方程组Ax=b的三个线性无关的解,则Ax=b的通解为___________。
设n阶实对称矩阵A满足A2+2A=D,若r(A)=k(0<k<n),求|A+3E|=___________.
=__________.
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,r(A)=3.且α1+α2=,α2+α3=,则方程组AX=b的通解为_______.
设n维向量α1,α2,α3满足2α1一α2+3α3=0,对于任意的n维向量β,向量组l1βα1,l2β+α2,l3β+α3都线性相关,则参数l1,l2,l3应满足关系____________.
设f=x12+x22+5x32+2ax1x2—2x1x3+4x2x3为正定二次型,则未知系数a的范围是_________。
交换积分次序=_____
设y(x)是方程y(4)一y"=0的解,且当x→0时,y(x)是x的3阶无穷小,求y(x).
设函数y=f(x)由参数方程所确定,其中ψ(t)具有二阶导数,且,求函数ψ(t).
设y=f(x)是区间[0,1]上任一非负连续函数.(1)试证存在x0∈(0,1),使得在区间在区间[0,x0]上以f(x0)为高的矩形的面积等于在区间[x0,1]上以y=f(x)为曲面的曲边梯形的面积.(2)又设f(x)在(0,1)上可导,且f’(x)
随机试题
Almosteveryonehasahobby.Ahobbycanbeanythingpeopleliketodointheirsparetime.Ahobbycan【C1】______themwithinter
砂仁、白豆蔻皆可用治()(2010年第143题)
下列对肠结核最有诊断价值的检查是
A、大黄B、芒硝C、番泻叶D、芦荟E、火麻仁具有活血祛瘀作用的泻下药是()
洗胃时每次灌注洗胃液的量宜为()。
在项目建议书和可行性研究阶段编制、计算投资需要量时使用的一种定额,该定额一般以独立的单项工程或完整的工程项目为对象,编制和计算投资需要量时使用。这种定额是()。
下列财务报表中,属于静态报表的是()。
栈和队列的共同点是()。
不可能所有的考生都不能通过考试。据此,可以推出()。
你是小区新上任的物业负责人,前任负责人在交接工作时说小区管道年限已久,可能有危险,然而目前并没有小区住户反映相关情况。针对这种状况,你怎么办?
最新回复
(
0
)