首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是连续函数,F(x)是f(x)的一个原函数,则( )
设f(x)是连续函数,F(x)是f(x)的一个原函数,则( )
admin
2020-03-01
66
问题
设f(x)是连续函数,F(x)是f(x)的一个原函数,则( )
选项
A、当f(x)是奇函数时,F(x)必为偶函数.
B、当f(x)是偶函数时,F(x)必为奇函数.
C、当f(x)是周期函数时,F(x)必为周期函数.
D、当f(x)是单调函数时,F(x)必为单调函数.
答案
A
解析
先考虑奇偶性:因为F(x)=∫
0
x
f(t)dt+C,所以F(一x)=∫
0
-x
f(t)dt+C.
令u=-t,∫
0
-x
f(t)dt+C=∫
0
x
f(一u)d(一u)+C=一∫
0
x
f(一u)du+C
当f(x)是奇函数时,f(一u)=-f(u),从而有
F(一x)=∫
0
x
f(u)du+C=F(x),即F(x)必为偶函数,故应选(A).
(B)的反例:偶函数f(x)=cosx,F(x)=sin x+1不是奇函数;
(C)的反例:周期函数f(x)=cos
2
x,F(x)=
不是周期函数;
(D)的反例:(一∞,+∞)内的单调函数f(x)=x,
在(一∞,+∞)内不是单调函数.
综上可知应选(A).
转载请注明原文地址:https://kaotiyun.com/show/hwA4777K
0
考研数学二
相关试题推荐
设三阶方阵A的特征值是1,2,3,它们所对应的特征向量依次为α1,α2,α3,令P=(3α3,α1,α2),则P一1AP=_________。
设A=的伴随矩阵为A*,且A*BA=2BA-8E.则矩阵B=_______.
以y=C1e-2x+C2ex+cosx为通解的二阶常系数非齐次线性微分方程为_______.
交换积分次序∫02dx∫x2xf(x,y)dy=________.
设D为y=x3及x=-1,y=1所围成的区域,则I=xydxdy=______.
计算二重积分xydσ,其中区域D由曲线r=1+cosθ(0≤θ≤π)与极轴围成。
证明:arctanx=(x∈(-∞,+∞)).
在上半平面上求一条上凹曲线,其上任一点P(χ,y)处的曲率等于此曲线在该点的法线段PQ的长度的倒数(Q为法线与χ轴的交点),且曲线在点(1,1)处的切线与χ轴平行.
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是:f(a,b)=0,f’x(a,b)=0,且当r(a,
在上半平面上求一条上凹曲线,其上任一点P(χ,y)处的曲率等于此曲线在该点的法线段PQ的长度的倒数(Q为法线与z轴的交点),且曲线在点(1,1)处的切线与χ轴平行.
随机试题
下列哪项不是机会致病菌引起医院感染率上升的原因
痢疾的病位在
工程的概、预算主要发生在()。
督察长连续3次考试成绩不及格的,中国证监会可免除其职务。()
(2014年真题)期刊的栏目设计应该()。
简述当代儿童发展观的基本内容。
决定警察必要性的直接因素是()。
请用不超过200字的篇幅,概括出给定材料所反映的主要问题。要求:全面,有条理,有层次。从政府制定政策的角度,提出解决给定资料所反映问题的对策建议。要求:有针对性,有条理,切实可行。字数不超过350字。
“渐”的作用,就是用每步相差极微极缓的方法来隐蔽时间的过去与事物的变迁的痕迹,使人误认其为恒久不变。这真是造物主骗人的一大诡计!这有一个比喻的故事:某农夫每天朝晨抱了犊而跳过一沟,到田里去工作,夕暮又抱了它跳过沟回家。每日如此,未尝间断。过了一年,犊已渐大
要在Web浏览器中查看某一电子商务公司的主页,应知道()。
最新回复
(
0
)