首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(X,Y)在矩形区域D={(χ,y):0≤χ≤2,0≤y≤1}上服从二维均匀分布,随机变量 (Ⅰ)求U和V的联合概率分布; (Ⅱ)讨论U和V的相关性与独立性.
设二维随机变量(X,Y)在矩形区域D={(χ,y):0≤χ≤2,0≤y≤1}上服从二维均匀分布,随机变量 (Ⅰ)求U和V的联合概率分布; (Ⅱ)讨论U和V的相关性与独立性.
admin
2018-06-12
57
问题
设二维随机变量(X,Y)在矩形区域D={(χ,y):0≤χ≤2,0≤y≤1}上服从二维均匀分布,随机变量
(Ⅰ)求U和V的联合概率分布;
(Ⅱ)讨论U和V的相关性与独立性.
选项
答案
依题意可知X与Y的联合概率密度为 [*] (I)(U,V)的可能取值为(-1,-1),(-1,1),(1,-1),(1,1),如图8—1, [*] 则有P{V=-1}=P{χ>y}=[*], P{U=-1}=P{X
2
+Y
2
>1} [*] P{U=1,V=-1}=P{X
2
+Y
2
≤1,X≥Y} [*] P{U=-1,V=-1}=P{V=-1}-P{U=1,V=-1}=[*]. 类似地(或根据联合分布与边缘分布的关系)可以计算出其他p
ij
的值,列表如下: [*] (Ⅱ)从(U,V)的联合分布与边缘分布可以计算出 EU=-π/4-1,EV=-1/2,EUV=1/2. 计算可知EUV≠EUEV,即U,与V相关,当然U与V也一定不独立.
解析
转载请注明原文地址:https://kaotiyun.com/show/VFg4777K
0
考研数学一
相关试题推荐
证明r(A)=1的充分必要条件是存在非零列向量a及非零行向量bT,使A=abT.
设X1,X2,…,Xn是取自正态总体N(μ,σ2)的简单随机样本,其样本均值和方差分别为,S2,则服从自由度为n的χ2分布的随机变量是
(Ⅰ)已知由参数方程确定了可导函数y=f(χ),求证:χ=0是y=f(χ)的极大值点.(Ⅱ)设F(χ,y)在(χ0,y0)某邻域有连续的二阶偏导数,且F(χ0,y0)=F′χ(χ0,y0)=0,F′y(χ0,y0)>0,F〞χχ(χ0,y0)<0
假设每次试验只有成功与失败两种结果,并且每次试验的成功率都是P(0<P<1).现进行重复独立试验直至成功与失败的结果都出现为止,已知试验次数X的数学期望EX=3,则P=_______.
设χ1,χ2,…,χn是来自总体X的简单随机样本,X的概率密度为f(χ)=,其中λ>0,a>0为已知参数.记Y=.(Ⅰ)求λ的矩估计量和最大似然估计量;(Ⅱ)求Y的数学期望EY的最大似然估计量
设两个相互独立的事件A与B至少有一个发生的概率为,A发生B不发生的概率与B发生A不发生的概率相等,则P(A)=_________
设n阶(n≥3)矩阵A的主对角元均为1,其余元素均为a,且方程组AX=0只有一个非零解组成基础解系,则a=_________
假设你是参加某卫视“相亲节目”的男嘉宾,现有n位女嘉宾在你面前自左到右排在一条直线上,每两位相邻的女嘉宾的距离为a(米).假设每位女嘉宾举手时你必须和她去握手,每位女嘉宾举手的概率均为,且相互独立,若Z表示你和一位女嘉宾握手后到另一位举手的女嘉宾处所走的路
从一批轴料中取15件测量其椭圆度,计算得S=0.025,问该批轴料椭圆度的总体方差与规定的σ2=0.0004有无显著差别?(a=0.05,椭圆度服从正态分布)
随机试题
在韦纳提出的归因理论中,不稳定的、可控的因素是()。
对脆性材料()不能进行压力加工。
明确将咳嗽分为外感、内伤两大类的是哪一部书()
我国的政策性银行有()。
某项固定资产原值为8万元,无残值,折旧年限为5年,若用双倍余额递减法计提折旧,则第4年应提折旧额为()元。
()是证券结算的一项基本原则,可以将证券结算中的违约交收风险降低到最低程度。
本月增值税销项税额为( )元。本月应缴增值税为( )元。
劳动资料亦称__________,是人们在生产劳动过程中用来改变或影响劳动对象的一切物质资料和物质条件。劳动资料包括十分复杂的内容,_______________是劳动资料的主要内容,是生产力发展水平的主要标志。
在窗体上画一个文本框(名称为Text1)和一个标签(名称为Label1),程序运行后,在文本框中每输入一个字符,都会立即在标签中显示文本框中字符的个数。以下可以实现上述操作的事件过程是
A、Shestartedcollectingstampsfromherchildhood.B、Agoodstampcollectioncanbebuiltinashorttime.C、Araresetofstam
最新回复
(
0
)