首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵Am×n的秩为r(A)=m<n,Im为m阶单位矩阵,则下述结论中正确的是( )
设矩阵Am×n的秩为r(A)=m<n,Im为m阶单位矩阵,则下述结论中正确的是( )
admin
2016-05-31
31
问题
设矩阵A
m×n
的秩为r(A)=m<n,I
m
为m阶单位矩阵,则下述结论中正确的是( )
选项
A、A的任意m个列向量必线性无关.
B、A的任意一个m阶子式不等于零.
C、A通过初等行变换,必可以化为(I
m
:O)的形式.
D、非齐次线性方程组Ax=b一定有无穷多解.
答案
D
解析
选项A、B显然不正确,将其中的“任意”都改为“存在”,结论才正确.对于矩阵A,只通过初等行变换是不能保证将其化为等价标准型(I
m
:O)的,故C也不正确,故选D.
事实上,由于A有m行,且r(A)=m<n,因此r(A:b)≥r(A)=m.又
r(A:b)≤rain{m,n+1}=m,
故r(A:b)=r(A)=m<n,从而该非齐次线性方程组一定有无穷多解.所以选项D正确.
转载请注明原文地址:https://kaotiyun.com/show/VGT4777K
0
考研数学三
相关试题推荐
经济政治发展的不平衡是资本主义的绝对规律,由此得出结论:社会主义可能首先在少数或者甚至在单独一个资本主义国家内获得胜利。提出这一著名论断的是()。
传统教科书上说,人类的进化过程是一条直线,从最开始的爬行猿类,到最终的现代直立智人。然而,中国科学家运用新一代基因测序技术分析古代DNA时发现,人类进化过程并非这样井然有序,他们存在的时间点有交集,而且这种交集还较多。这表明()。
2020年3月26日,美国所谓“2019年台北法案”被签署成法。美方这一行动严重违反一个中国原则和中美三个联合公报规定,严重违背国际法和国际关系基本准则,粗暴干涉中国内政。中方对此表示强烈不满和坚决反对。这表明(社)。
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
将一平面薄板铅直浸没于水中,取x轴铅直向下,y轴位于水面上,并设薄板占有xOy面上的闭区域D,试用二重积分表示薄板的一侧所受到的水压力.
验证下列函数满足波动方程utt=a2uxx:(1)u=sin(kx)sin(akt);(2)u=ln(x+at);(3)u=sin(x-at).
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×x中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,...,xn)=Aij/丨A丨xixj.二次型g(X)=XTAX与f(X)的规范形是否相同?说明理由.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A;
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)=(Ⅰ)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
随机试题
检测心脏高速血流信息,宜采用下列哪种方法
常规制做气腹,气腹针穿刺最佳部位
A.A凝聚原B.B凝聚原C.D抗原D.A凝聚原和B凝聚原E.无A凝聚原和B凝聚原O型血红细胞膜上含有的凝聚原是
回阳救急汤的功用是()
恶寒,身热不扬,胸闷,咳嗽,苔白腻,属于
口服有机磷农药中毒一般出现症状的时间为
市区内某大型商贸公司为增值税一般纳税人,兼营商品加工、批发、零售和进出口业务,2013年8月相关经营业务如下:(1)进口高尔夫球一批,支付货物的价款820万元,另支付国外代理人经纪费4万元;支付运抵我国海关地前的运输费用20万元、装卸费用和保险费
网下和网上投资者参与新股申购的,获得配售后,应当按时足额缴付认购资金。网上投资者连续12个月内累计出现3次中签后未足额缴款的情形时,一定期限内不得参与新股申购。根据证券法律制度的规定,该禁止参与新股申购的法定期限为()。
秘书在拟定接待计划时,需要了解掌握的背景资料有()。
1976年联邦德国颁布(),规定正规高等学校修业年限为四年,无特殊情况不得延迟毕业。这是联邦德国战后第一部有权威的高等教育方面的法律
最新回复
(
0
)