首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(97年)设 则3条直线a1x+b1y+c1=0,a2x+b2y+c2=0,a3x+b3y+c3=0(其中ai2+bi2≠0,i=1,2,3)交于一点的充要条件是
(97年)设 则3条直线a1x+b1y+c1=0,a2x+b2y+c2=0,a3x+b3y+c3=0(其中ai2+bi2≠0,i=1,2,3)交于一点的充要条件是
admin
2017-04-20
32
问题
(97年)设
则3条直线a
1
x+b
1
y+c
1
=0,a
2
x+b
2
y+c
2
=0,a
3
x+b
3
y+c
3
=0(其中a
i
2
+b
i
2
≠0,i=1,2,3)交于一点的充要条件是
选项
A、α
1
,α
2
,α
3
线性相关.
B、α
1
,α
2
,α
3
线性无关.
C、秩r(α
1
,α
2
,α
3
)=秩r(α
1
,α
2
).
D、α
1
,α
2
,α
3
线性相关,α
1
,α
2
线性无关.
答案
D
解析
考虑由3条直线的方程联立所得的线性方程组
3条直线交于一点,也就是方程组(I)有唯一解.
若α
3
=0,则α
1
,α
2
,α
3
线性相关且方程组(I)有零解,由二元齐次线性方程组只有零解的充要条件(系数矩阵的秩等于未知量个数),得r(α
1
,α
2
)=2,故此时只有(D)正确.
若α
3
≠0,则(I)为一非齐次线性方程组,由非齐次线性方程组有唯一解的充要条件(系数矩阵的秩=增广矩阵的秩=未知量个数),得r(α
1
,α
2
)=r(α
1
α
2
一α
3
)=2,即α
1
,α
2
线性无关,而α
1
,α
2
,α
3
线性相关.故只有(D)正确.
转载请注明原文地址:https://kaotiyun.com/show/VMu4777K
0
考研数学一
相关试题推荐
设f(x,y)与f(x,y)均为可微函数,且φ’(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是
考虑二元函数的下面4条性质:①f(x,y)在点(xo,yo)处连续;②f(x,y)在点(xo,yo)处的两个偏导数连续;③f(x,y)在点(xo,yo)处可微;④f(x,y)在点(xo,yo)处的两个偏导数存在.若用“P→Q”表示
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性无关?
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性相关?
基金公司为其客户提供几种不同的基金:一个货币市场基金,三种债券基金(短期债券、中期债券和长期债券),两种股票基金(适度风险股票和高风险股票)以及一个平衡基金.在所有只持有一种基金的客户中,持有各基金的客户比例分别为货币市场20%高
商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂产品每箱装100个,废品率为0.06,乙厂产品每箱120个,废品率为0.05.若将所有产品开箱混装,任取一个其为废品的概率
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:“20件产品全是合格品”与“20件产品中至少有一件是废品”;
设A、B、C是随机事件,A与C互不相容,P(AB)=1/2,P(C)=1/3,则P(AB|C ̄)=________.
已知随机变量X和Y相互独立,则X-N(1,1),Y-(1,4),又P{aX+bY≤0}=1/2,则a与b应满足关系式________.
求微分方程(3x2+2xy-y2)dx+(x2-2xy)dy=0的通解.
随机试题
根据问题的构成要素特点,如何培养学生的责任感,属于()。
阅读屈原《周殇》中的一段文字:操吴戈兮被犀甲,车错毂兮短兵接。旌蔽日兮敌若云,矢交坠兮士争先。凌余阵兮躐余行,左骖殪兮右刃伤。霾两轮兮絷四马,援玉抱兮击鸣鼓。天时坠兮威灵怒,严杀尽兮弃原野。本节主要写了什么内容?
下列哪项不是甲状腺危象的治疗
诊断PNH应选的试验不包括下列哪一项
患者,男性,55岁,戴下颌全口义齿5天,咬肌前沿磨痛,且咬肌活动时义齿松动脱位。其病因是
A.防腐剂B.矫味剂C.乳化剂D.抗氧剂E.助悬剂制备醋酸可的松滴眼液时,加入的亚硫酸氢钠是作为
会计从业资格管理机构应当对()实施监督检查。
教师在教育教学中应当遵循学生身心发展规律,关注学生的(),因材施教,促进学生的实际发展。
A、 B、 C、 D、 B
设A,B为任意两个不相容的事件且P(A)>0,P(B)>0,则下列结论正确的是().
最新回复
(
0
)