首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(97年)设 则3条直线a1x+b1y+c1=0,a2x+b2y+c2=0,a3x+b3y+c3=0(其中ai2+bi2≠0,i=1,2,3)交于一点的充要条件是
(97年)设 则3条直线a1x+b1y+c1=0,a2x+b2y+c2=0,a3x+b3y+c3=0(其中ai2+bi2≠0,i=1,2,3)交于一点的充要条件是
admin
2017-04-20
45
问题
(97年)设
则3条直线a
1
x+b
1
y+c
1
=0,a
2
x+b
2
y+c
2
=0,a
3
x+b
3
y+c
3
=0(其中a
i
2
+b
i
2
≠0,i=1,2,3)交于一点的充要条件是
选项
A、α
1
,α
2
,α
3
线性相关.
B、α
1
,α
2
,α
3
线性无关.
C、秩r(α
1
,α
2
,α
3
)=秩r(α
1
,α
2
).
D、α
1
,α
2
,α
3
线性相关,α
1
,α
2
线性无关.
答案
D
解析
考虑由3条直线的方程联立所得的线性方程组
3条直线交于一点,也就是方程组(I)有唯一解.
若α
3
=0,则α
1
,α
2
,α
3
线性相关且方程组(I)有零解,由二元齐次线性方程组只有零解的充要条件(系数矩阵的秩等于未知量个数),得r(α
1
,α
2
)=2,故此时只有(D)正确.
若α
3
≠0,则(I)为一非齐次线性方程组,由非齐次线性方程组有唯一解的充要条件(系数矩阵的秩=增广矩阵的秩=未知量个数),得r(α
1
,α
2
)=r(α
1
α
2
一α
3
)=2,即α
1
,α
2
线性无关,而α
1
,α
2
,α
3
线性相关.故只有(D)正确.
转载请注明原文地址:https://kaotiyun.com/show/VMu4777K
0
考研数学一
相关试题推荐
设A为n阶矩阵,满足AAT=E(E为n阶单位阵,AT是A的转置矩阵),丨A丨
设z=z(x,y)是由x2-6xy+10y2-2yz-z2+18=0确定的函数,z=z(x,y)的极值点_____________和极值___________.
将函数f(x)=x/(2+x-x2)展开成x的幂级数.
设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求.
设矩阵A满足A2+A-4E=0,其中E为单位矩阵,则(A-E)-1=__________.
设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1等于
设二维离散型随机变量X、Y的概率分布为(I)求P{X=2Y};(Ⅱ)求Cov(X-Y,Y)与ρXY.
已知(1)计算行列式|A|.(2)当实数α为何值时,方程组Ax=β有无穷多解,并求其通解.
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Ax=β的3个线性无关的解,k1,k2为任意常数,则Ax=β的通解为
随机试题
男性,48岁,剧烈胸痛2小时,呈闷痛,查心电图示Vl~V5ST段抬高0.3mm,T波倒置。该患者应首选何种治疗方法
A、饮食控制B、胰岛素皮下注射C、胰岛素静脉注射D、甲苯磺丁脲口服E、硫脲类口服胰岛素依赖型重症糖尿病宜采用
低温保藏时,影响食品卫生质量的主要因素是
在心理应激中起关键作用的因素是
通常条件下,增加药物溶解度的常用附加剂是()。
燃气管道非开挖修复技术主要有()。
漏提管理费用、固定资产折旧费,将导致当期费用虚减,固定资产净值虚增。 ( )
列入《安全质量许可制度的进口商品目录》内的货物,必须取得国家检验检疫部门颁发的质量许可证并加贴()方可申请报检。
近年来,一些西方汉学家依据西方的写本概念和研究模式重新_______中国古代文献。比如有学者考察了_______至今的早期古典诗歌文本如何经过不同的历史传播、接受阶段,在事实和观念中被构建而形成。填入画横线部分最恰当的一项是:
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f’+(0)
最新回复
(
0
)