首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知方程组有无穷多解,且系数矩阵A的特征值是1,﹣1,0,对应的特征向量依次是p1=(1,2a,﹣1)T,p2=(a-2,﹣1,a+1)T,p3=(a,a+3,a+2)T,求矩阵A及A100.
已知方程组有无穷多解,且系数矩阵A的特征值是1,﹣1,0,对应的特征向量依次是p1=(1,2a,﹣1)T,p2=(a-2,﹣1,a+1)T,p3=(a,a+3,a+2)T,求矩阵A及A100.
admin
2020-06-05
70
问题
已知方程组
有无穷多解,且系数矩阵A的特征值是1,﹣1,0,对应的特征向量依次是p
1
=(1,2a,﹣1)
T
,p
2
=(a-2,﹣1,a+1)
T
,p
3
=(a,a+3,a+2)
T
,求矩阵A及A
100
.
选项
答案
对方程组增广矩阵作初等行变换: [*] 当a=﹣1或a=0时,[*]=R(A)=2﹤3,即方程组均有无穷多解. 若a=﹣1,则p
1
=(1,﹣2,﹣1)
T
与p
3
=(﹣1,2,1)
T
对应分量成比例,即p
1
,p
2
,p
3
线性相关,不合题意. 若a=0时,则p
1
=(1,0,﹣1)
T
,p
2
=(﹣2,﹣1,1)
T
,p
3
=(0,3,2)
T
线性无关.根据特征值与特征向量的定义,有A(p
1
,p
2
,p
3
)=(p
1
,﹣p
2
,0).于是 A=(p
1
,﹣p
2
,0)(p
1
,p
2
,p
3
)
﹣1
[*] 因为A有3个不同的特征值,所以它与对角矩阵相似,即P
﹣1
AP=[*]=diag(1,﹣1,0),其中P=(p
1
,p
2
,p
3
),于是 A
100
[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/VNv4777K
0
考研数学一
相关试题推荐
二次型f(x1,x2,x3)=(x1—x2)2+4x2x3的矩阵为___________.
设A、B均为三阶矩阵,E是三阶单位矩阵,已知AB=2A+3B,A=,则(B-2E)-1=_________。
若n阶可逆矩阵A的属于特征值λ的特征向量是α,则在下列矩阵中,α不是其特征向量的是()
设可导函数f(x)满足方程,则f(x)=()
设A,B是n阶矩阵,则C=的伴随矩阵是
设A为3阶实对称矩阵,如果二次曲面方程在正交变换下的标准方程的图形如图所示,则A的正特征值的个数为]()
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是()
设A,B是n阶方阵,X,Y,b是n×1矩阵,则方程组有解的充要条件是()
要使ξ1=(1,0,2)T,ξ2=(0,1,-1)T都是齐次线性方程组AX=0的解,只要系数矩阵为()
已知A是三阶实对称矩阵且不可逆,又知Aα=3α,Aβ=β,其中α=(1,2,3)T,β=(5,1,t)T,则下列命题正确的是().①A必可相似对角化②必有t=-1③γ=(1,16,-11)T必是A的特征向量④|A—E|必为0
随机试题
一般要求注射用水的贮存时间,不超过的是
成牙本质细胞突起穿过釉牙本质界被埋在釉质中的纺锤状结构是
肛瘘手术中影响手术效果的关键步骤在于
下列资金中,不在房地产投资项目现金流量表中列出的是()。
下列各项中,能够成为预计资产负债表中存货项目金额来源的有()。
美国华盛顿儿童博物馆的格言:“我听见了就忘记了,我看见了就记住了.我做了就理解了。”说明学前教育观念需要教师在教育过程中要()。
下列情形可能发生的是:
保国会
A、Heislockedoutofhisroom.B、Hecan’tgethisroomlocked.C、Helosthiskeyintheswimmingpool.D、Hewon’tgoswimmingw
IwishI_______________(今天早晨多睡一会),butIhadtogetupandcometoclass.
最新回复
(
0
)