首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=xTAx=x12+5x22+x32-4x1x2+2x2x3,则对任意x≠0,均有( ).
设二次型f(x1,x2,x3)=xTAx=x12+5x22+x32-4x1x2+2x2x3,则对任意x≠0,均有( ).
admin
2021-07-27
27
问题
设二次型f(x
1
,x
2
,x
3
)=x
T
Ax=x
1
2
+5x
2
2
+x
3
2
-4x
1
x
2
+2x
2
x
3
,则对任意x≠0,均有( ).
选项
A、f(x
1
,x
2
,x
3
)>0
B、f(x
1
,x
2
,x
3
)≥0
C、f(x
1
,x
2
,x
3
)<0
D、f(x
1
,x
2
,x
3
)≤0
答案
B
解析
因f(x
1
,x
1
,x
3
)=x
1
2
+5x
2
2
+x
3
2
-4xxbx
2
+2x
2
x
3
=(x
1
-2x
2
)
2
+(x
2
+x
3
)
2
≥0.取x=[x
1
,x
1
,x
3
]
T
=[2,1,-1]
T
有f(x
1
,x
1
,x
3
)=0,等号成立.故选(B).
转载请注明原文地址:https://kaotiyun.com/show/VQy4777K
0
考研数学二
相关试题推荐
下列二次型中是正定二次型的是()
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是()
设u=u(x,y)有二阶连续偏导数,证明:在极坐标变换x=rcosθ,y=rsinθ下有
设函数f(χ)在[0,π]上连续,且∫0πf(χ)sinχdχ=0∫0πf(χ)cosχdχ,=0.证明:在(0,π)内f(χ)至少有两个零点.
设A,B均为n阶正定矩阵,下列各矩阵中不一定是正定矩阵的是()
设A,B均为正定矩阵,则()
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
设向量组α1,α2,α3,α4线性无关,则向量组().
设A是4×5矩阵,ξ1=[1,一1,1,0,0]T,ξ2=[一1,3,一1,2,0]T,ξ3=[2,1,2,3,0]T,ξ4=[1,0,一1,l,-2]T都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ1,ξ2,ξ3,ξ4线性表出,若k1,k
二次型f(x1,x2,x3)=x12+5x22+x32一4x1x2+2x2x3的标准形可以是()
随机试题
下面几种不是数据库应用系统开发王具的是()
下列符合乳腺癌的描述是
初孕妇,26岁。孕40周,近半月头痛、眼花,今晨出现剧烈头痛并呕吐2次来院就诊。为与慢性肾炎鉴别,最有价值的血液检查结果是
以下属于确定型风险估计的方法是()。
Ioncefoundoutthatdoingafavorforsomeonecouldgetyouintotrouble.Iwasintheeighthgradeat【C1】________time,andwe
成立于抗日战争时期的人民公安机关是()。
班级舆论能积极促进学生的思想品质。()
公务员的培训种类有()。
设有如下程序段:a$="BeijingShanghai"b$=Mid(a$,InStr(a$,"g")+1)执行该程序段后,变量b$的值为()。
PresidentEnriquePenaNietohasencouragedMexicanstowalkmore,usestairsandexerciseonehoureverydayashelaunchedac
最新回复
(
0
)