首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2002年] 求微分方程xdy+(x一2y)dx=0的一个解y=y(x)使得由曲线y=y(x)与直线x=1,x=2及x轴所围成的平面图形绕x轴旋转一周的旋转体体积最小.
[2002年] 求微分方程xdy+(x一2y)dx=0的一个解y=y(x)使得由曲线y=y(x)与直线x=1,x=2及x轴所围成的平面图形绕x轴旋转一周的旋转体体积最小.
admin
2019-04-05
90
问题
[2002年] 求微分方程xdy+(x一2y)dx=0的一个解y=y(x)使得由曲线y=y(x)与直线x=1,x=2及x轴所围成的平面图形绕x轴旋转一周的旋转体体积最小.
选项
答案
先求出所给微分方程的通解,求出曲线的表示式,再由旋转体体积最小,求出方程的特解,确定曲线. 原方程可化为[*]=一1,则 y=[*]=x
2
+Cx
2
. 由曲线y=x+Cx
2
与直线x=1,x=2及x轴所围成的平面图形绕x轴旋转一周的旋转体体积为 V(C)=∫
1
2
π(x+Cx
2
)
2
dx=π(31C
2
/5+15C/2+7/3). 令V′(C)=π(62C/5+15/2)=0,得C=一75/124. 又V″(C)=62π/5>0,故C=一75/124为唯一极小值点,也是最小值点,于是得 y=y(x)=x=75x
2
/124.
解析
转载请注明原文地址:https://kaotiyun.com/show/VWV4777K
0
考研数学二
相关试题推荐
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。问k为何值时,f(x)在x=0处可导。
已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=0,求线性方程组Ax=0的通解.
计算定积分
某企业的收益函数为R(Q)=40Q-4Q2,总成本函数C(Q)=2Q2+4Q+10,如果政府对该企业征收产品税T=Qt,其中t为税率,求(1)税收最大时的税率;(2)企业纳税后的最大利润.
设数列{xn}满足0<x1<π,xn+1=sinxn(n=1,2,…)。证明存在,并求该极限。
求由下列方程所确定的隐函数的导数或偏导数:
设随机变量X1,X2,…,Xn,…相互独立,则根据列维一林德伯格中心极限定理,当n定充分大时,X1+X2+…+Xn近似服从正态分布,只要Xi(i=1,2,…)满足条件()
(2003年试题,十)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.f’(x)>0.若极限存在,证明:(1)在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ使(3)在(a,b)内存在与(2)中ξ相异的点η,使f’(η)(b2
[2012年]设an>0(n=1,2,3,…),Sn=a1+a2+a3+…+an,则数列{Sn}有界是数列{an}收敛的().
(2003年试题,六)设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.(1)试将x=x(y)所满足的微分方程变换为y=y(x)满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的
随机试题
多尿期的标志是()
共同参与型护患关系模式的特点包括()。
上海甲公司作为卖方和澳门乙公司订立了一项钢材购销合同,约定有关合同的争议在中国内地仲裁。乙公司在内地和澳门均有营业机构。双方发生争议后,仲裁庭裁决乙公司对甲公司进行赔偿。乙公司未在规定的期限内履行仲裁裁决。关于甲公司对此采取的做法,下列哪些选项是正确的?
我国21世纪初可持续发展的基本原则有()。
某施工工地脚手架垮塌,造成10人重伤,根据《生产安全事故报告和调查处理条例》规定,该事故的等级属于()。
茶叶含有咖啡因,故容易失眠的人睡前不宜饮用浓茶。()
在当前社会,人与人之间的激烈竞争在所难免,但不少人因为得失心较重,做事时不惜违反公德伦理和规则秩序,最后不仅很难占到便宜,有时反而会害了自己。随着制度越来越健全,太重得失而逾规的行为只能是搬起石头砸自己的脚。比如,运动员们每日辛苦训练就是为了在比赛中获得奖
有以下计算公式若程序前面已经在命令行中包含math.h文件,不能够正确计算上述公式的程序段是
It’sself-evidentthatnoonewouldhavetimetoknoweverythinggoingonintheworld.
Peoplehavewonderedforalongtimehowtheirpersonalitiesandbehaviorsareformed.It’snoteasytoexplainwhyonepersoni
最新回复
(
0
)