首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:对称阵A为正定的充要条件是存在可逆阵U,使A=UTU,即A与单位阵E合同.
证明:对称阵A为正定的充要条件是存在可逆阵U,使A=UTU,即A与单位阵E合同.
admin
2020-06-05
43
问题
证明:对称阵A为正定的充要条件是存在可逆阵U,使A=U
T
U,即A与单位阵E合同.
选项
答案
充分性因为存在可逆矩阵U,使A=U
T
U,故任取x∈R
n
,且x≠0,就有Ux≠0(否则,由u为可逆矩阵可得x=0),并且,A的二次型在该处的值 f(x)=x
T
Ax=x
T
U
T
Ux=[Ux,Ux]=||Ux||
2
﹥0即矩阵A的二次型是正定的,从而A是正定矩阵. 必要性因A是对称阵,故必存在正交阵P,使得P
T
AP=[*]=diag(λ
1
,λ
2
,…,λ
n
),其中,λ
1
,λ
2
,…,λ
n
是A的n个特征值,由于A为正定矩阵,故A的所有特征值均大于0,即λ
i
﹥0(i=1,2,…,n).记对角阵[*],则有 [*] 从而[*],记U=(P[*])
T
,显然U为可逆矩阵,并且由上式知A=U
T
U.
解析
转载请注明原文地址:https://kaotiyun.com/show/Vfv4777K
0
考研数学一
相关试题推荐
关于函数y=f(x)在点x0的以下结论正确的是()
设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵曰,A*,B*分别为A,B的伴随矩阵,则
设函数f(x)在(一∞,+∞)存在二阶导数,且f(x)=f(一x),当x<0时有f’(x)<0,f"(x)>0,则当x>0时,有()
设向量β可由向量组α1,α2,...,αm线性表示,但不能由向量组(I):α1,α2,...,αm-1,线性表示,记向量组(Ⅱ):α1,α2,...,αm-1,β,则
积分()
设A为3阶矩阵,将A的第2行加到第1行得B,再将B的第1列的-1倍加到第2列得C,记则
设A是m×n矩阵,B是n×m矩阵,则线性方程组(AB)x=0
设函数f(x)在x=a的某邻域内有定义,且,则在x=a处()
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则此方程组的基础解系还可以是
)设二次型f(x1,x2,x3)=2x12—x22+ax32+2x1x2—8x1x3+2x2x3在正交变换x=Qy下的标准形为λ1y12+λ2y22,求以的值及一个正交矩阵Q.
随机试题
简述项目投资的分类。
与硅肺发病关系最密切的细胞是
甲、乙、丙拟共同出资50万元设立一有限公司。公司成立后,在其设置的股东名册中记载了甲乙丙3人的姓名与出资额等事项,但在办理公司登记时遗漏了丙,使得公司登记的文件中股东只有甲乙2人。下列哪一说法是正确的?(2012年卷三第26题)
蒸压灰砂砖适用于:[2014—014]
出口退税的形式包括()。
四川最长、最宽的山系是()。
某学生智商为100表示()。
(2016·江西)关于个体身心发展的动因理论有()
Dogsaresocialanimalsandwithoutpropertraining,theywillbehavelikewildanimals.Theywillspoilyourhouse,destroyyou
Who’sLiMing?
最新回复
(
0
)