首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为n阶方阵,P,Q为n阶可逆矩阵,下列命题不正确的是( )
设A,B为n阶方阵,P,Q为n阶可逆矩阵,下列命题不正确的是( )
admin
2019-08-12
86
问题
设A,B为n阶方阵,P,Q为n阶可逆矩阵,下列命题不正确的是( )
选项
A、若B=AQ,则A的列向量组与B的列向组等价。
B、若B=PA,则A的行向量组与B的行向量组等价。
C、若B=PAQ,则A的行(列)向量组与B的行(列)向量组等价。
D、若A的行(列)向量组与矩阵曰的行(列)向量组等价,则矩阵A与B等价。
答案
C
解析
将等式B=AQ中的A、B按列分块,设A=(α
1
,α
2
,…,α
n
),B=(β
1
β
2
,…,β
n
),则有
表明向量组β
1
β
2
,…,β
n
可由向量组α
1
,α
2
,…,α
n
线性表示。由于Q可逆,从而有A=BQ
一1
,即(α
1
,α
2
,…,α
n
)=(β
1
β
2
,…,β
n
)Q
一1
,表明向量组α
1
,α
2
,…,α
n
可由向量组β
1
β
2
,…,β
n
线性表示,因此这两个向量组等价,故选项A的命题正确。类似地,对于PA=B,将A与B按行分块可得出A与B的行向量组等价,从而选项B的命题正确。下例可表明选项C的命题不正确。设
则P、Q均为可逆矩阵,且
但B的行(列)向量组与A的行(列)向量组不等价。对于选项D,若A的行(列)向量组与B的行(列)向量组等价,则这两个向量组的秩相同,从而矩阵A与B的秩相同,故矩阵A与B等价(两个同型矩阵等价的充分必要条件是秩相等)。
转载请注明原文地址:https://kaotiyun.com/show/VlN4777K
0
考研数学二
相关试题推荐
设A=,求:(1)2A11+A12-A13;(2)A11+4A21+A31+2A41.
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得=ξf′(ξ).
设二元函数计算二重积分
已知A,B为3阶相似矩阵,λ1=1,λ2=2为A的两个特征值,行列式|B|=2,则行列式
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并且满足又曲线y=f(x)与x=1,y=0所围的图形S的面积值为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
设f(x)在(-∞,+∞)内二次可导,令F(x)=求常数A,B,C的值使函数F(x)在(-∞,+∞)内二次可导.
η1,η2是n元齐次方程组Ax=0的两个不同的解,若r(A)=n一1,则Ax=0的通解为()
[*]由密度函数求分布函数可以用积分法,但当涉及分段密度函数时一定要分清需要积分的区域,故一般先画个草图(图3-2),标出非零的密度函数,然后分不同情况观察(X,Y)落在给定的(x,y)左下方平面区域内的概率,从而计算F(x,y)的值。在计算随机变量满足某
已知函数f(x)具有任意阶导数,且f’(x)=f2(x),则当n为大于2的正整数时,f(x)的n阶导数是()
设f(x)可导,则当△x→0时,△y-dy是△x的().
随机试题
为什么古希腊会产生城邦制,东方国家却长期存在君主专制?亚里士多德认为,君主专制在野蛮人中间常常可以见到,同僭主或暴君制很接近。因为野蛮民族的性情天生就比希腊各民族更具奴性,其中亚细亚蛮族的奴性更甚于欧罗巴蛮族,所以他们甘受独裁统治而不起来叛乱。如果以下各项
关于胰岛素的下列描述,哪项是错误的()
腮腺良性肿瘤中最常见的是
乳癌最早表现为
以下工程类型中,()不属于城市桥梁工程。
群租并不是一堆人要去花钱买罪受,而是因为他们的住房需求无法得到满足。强力执行禁令或许可以消除群租于一时,却无法解决这些打拼者的实际住房需求。北京、上海等大城市从几年前就开始大力整治群租,然而禁而不绝,“回潮”不断,甚至愈演愈烈,只能说明这种需求之旺盛。有关
下列属于形容天气的诗句是:
早晨开始下雪整天不停,中午一扫雪车开始扫雪,每小时扫雪体积为常数,到下午2点扫雪2km,到下午4点又扫雪1km,问降雪是什么时候开始的?
【61】【62】
CominowaltLtd.1095,AvenueofHersham
最新回复
(
0
)