首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)证明方程xn+xn-1+…+x=1(n为大于1的整数)在区间内有且仅有一个实根; (2)记(1)中的实根为xn,证明存在,并求此极限.
(1)证明方程xn+xn-1+…+x=1(n为大于1的整数)在区间内有且仅有一个实根; (2)记(1)中的实根为xn,证明存在,并求此极限.
admin
2014-01-26
107
问题
(1)证明方程x
n
+x
n-1
+…+x=1(n为大于1的整数)在区间
内有且仅有一个实根;
(2)记(1)中的实根为x
n
,证明
存在,并求此极限.
选项
答案
(1)令 f
n
(x)=x
n
+x
n-1
+…+x-1.因为f
n
(x)在[*]上连续,又[*],f
n
(1)=n-1>0, 由介值定理,存在x
n
∈[*],使f
n
(x
n
)=0(n=2,3,…),即原方程在区间[*]内至少有一个实根.又当x∈[*]时,f’(x)=1+2x+…+nx
n-1
>0,即f
n
(x)在[*]内单调增加,故原方程在区间[*]内有且仅有一个实根. (2)由(1)知数列{x
n
}有界,下面证明单调性. 因为 f
n
(x
n
)=0=f
n+1
(x
n+1
),n=2,3,…. 故 x
n
n
+x
n
n-1
+…+x
n
-1=(x
n+1
n-1
+…+x
n+1
n
n+1
n+1
>0, 即f
n
(x
n
)>f
n2
(x
n+1
),而f
n
(x)在[*]内单调增加,从而有x
n
>x
n+1
,即数列{x
n2
}单调减少(n=2,3,…),所以[*]存在,设为l.由于0<x
n
<x
2
<1,故0<
n
n
<x
2
n
.根据夹逼定理有[*]. 由f
n
(x
n
)=0(n=2,3,…),即x
n
n
+x
n
n-1
+…+x
n
=1,得[*], 令n→∞,取极限得[*],解得[*].故[*].
解析
[分析]根的存在性用介值定理,而唯一性利用单调性;对于(2),应先证明极限存在,在已知关系式两边取极限即可.
[评注]注意解答过程中的步骤0<x
n
<x
2
<1不是多余的,因为仅由0<x
n
<1是推不出
的.
转载请注明原文地址:https://kaotiyun.com/show/Vm34777K
0
考研数学二
相关试题推荐
设其中c1,c2,c3,c4为任意常数,则下列向量组线性相关的是().
(2001年)设函数g(x)=∫0xf(u)du,其中f(x)=则g(x)在区间(0,2)内()
设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y的概率分布为P{Y=0}=P{Y=1}=.记FZ(z)为随机变量Z=XY的分布函数,则函数FZ(z)的间断点个数为
(06年)设函数f(χ)在χ=0处连续,且=1,则
(88年)已知向量组α1,α2,…,αs(s≥2)线性无关.设β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1.试讨论向量组β1,β2,…,βs的线性相关性.
(88年)过曲线y=χ2(χ≥0)上某点A作一切线.使之与曲线及χ轴围成图形的面积为,求:(1)切点A的坐标.(2)过切点A的切线方程;(3)由上述图形绕z轴旋转而成旋转体体积V.
(16年)设函数f(χ)连续,且满足∫0χf(χ-t)dt=∫0χ(χ-t)f(t)dt+e-χ-1,求f(χ).
(87年)将函数f(χ)=展成χ的幂级数,并指出其收敛区间.
[2008年]设n元线性方程组AX=b,其中证明行列式|A|=(n+1)an;
当x→0时,下列表达式中与x是等价无穷小量的是().
随机试题
画出图Ⅱ-15所示三相变压器的位形图,并判断其连接组别。
劳神过度易损伤的内脏是
关于儿童颌骨骨折的治疗,哪项是错误的
患者,女,45岁,食欲不振数日,症见嗳气吞酸、腹胀泄泻,证属脾胃虚弱、中气不和,治当健脾和胃,宜选用的中成药是
对使用新能源车船、节约能源车船的,免征车船税。()
以美国教育家杜威为代表的现代教育派倡导的“三中心”是()。
正如党的十七大报告所总结的:“改革开放不是一蹴而就的”,改革开放不是一次轻松浪漫的旅行,而是一次决定中华民族历史命运的伟大远航,它有___________的时刻,也时常充满惊涛骇浪。填入画横线部分最恰当的一项是()。
Swisswatchmakershavefirmlyestablishedthemselvesastheworld’sleadingwatchmakersoverthepastthreecenturies.Withare
Amajorreasonforconflictintheanimalworldisterritory.Themaleanimal【C1】______anarea.Thesizeoftheareais【C2】____
ItisknowntousthatEnglishisnotasoldasChinese,butitiswidelyusedbymostpeopleallovertheworld.Englishspeake
最新回复
(
0
)