首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2008年] 设n元线性方程组AX=b,其中 证明行列式|A|=(n+1)an;
[2008年] 设n元线性方程组AX=b,其中 证明行列式|A|=(n+1)an;
admin
2021-01-25
88
问题
[2008年] 设n元线性方程组AX=b,其中
证明行列式|A|=(n+1)a
n
;
选项
答案
证一 利用三对称行列式的结论证之.由命题2.1.1.2知 [*] 故|A|=|A|
T
=(n+1)a
n
. 证二 用数学归纳法证之. 当n=1时,|A|=|2a|=2a=(1+1)a
1
=2a,结论成立. 当n=2时,[*]结论也成立. 假设结论对n一2,n一1阶行列式成立,则|A|
n-2
=(n一1)a
n-2
,|A|
n-1
=na
n-1
.将|A|按第1行展开得到 |A|
n
=2a|A|
n-1
—a
2
|A|
n-2
=2—2a·na
n-1
一a
2
·(n一1)a
n-2
=(n+1)a
n
, 即结论对n阶行列式仍成立.由数学归纳法原理知,对任何正整数n,都有|A|=(n+1)a
n
. 证三 为方便计,令D
n
=|A|.将其按第1列展开得到D
n
=2aD
n-1
一a
2
D
n-2
, 即 D
n
一aD
n-1
=aD
n-1
一a
2
D
n-2
=a(D
n-1
—aD
n-2
)=a·a(D
n-2
一aD
n-3
) =a
2
(D
n-2
一aD
n-3
)=…=a
n-2
(D
2
一aD
1
)=a
n
, 故 D
n
=a
n
+aD
n-1
=a
n
+a(a
n-1
+aD
n-2
)=2a
n
+a
2
D
n-2
=… =(n一2)a
n
+a
n-2
D
2
=(n—2)a
n
+a
n-2
(a
2
+aD
1
) =(n一1)a
n
+a
n-1
D
1
=(n一1)a
n
+a
n-1
·2a=(n+1)a
n
. 证四 利用行列式性质化成三角行列式求之. [*] (注:命题2.1.1.2 设n阶三对称行列式[*]则 [*])
解析
转载请注明原文地址:https://kaotiyun.com/show/hux4777K
0
考研数学三
相关试题推荐
[2016年]设二维随机变量(X,Y)在区域D={(x,y)|0<x<1,}上服从均匀分布,令求Z=U+X的分布函数FZ(z).
(97年)设随机变量X的绝对值不大于1,P(X=-1)=,P(X=1)=.在事件{-1<X<1}出现的条件下,X在区间(-1,1)内的任一子区间上取值的条件概率与该子区间的长度成正比.试求X的分布函数F(χ)=P(X≤χ).
[2003年]已知齐次线性方程组其中试讨论a1,a2,…,an和b满足何种关系时,(1)方程组仅有零解;(2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
设z=xf(x+y)+g(x一y,x2+y2),其中f,g分别二阶连续可导和二阶连续可偏导,则=________.
微分方程(y2+1)dx=y(y一2x)dy的通解是______.
f(x1,x2,x3,x4)=XTAX的正惯性指数是2,且A2-2A=0,该二次型的规范形为______.
设f(x)连续,且f(1)=0,f’(1)=2,求极限
(1991年)假设曲线L1:y=1一x2(0≤x≤1)与z轴和Y轴所围区域被曲线L2:y=ax2分为面积相等的两部分.其中a是大于零的常数,试确定a的值.
在第一象限求一曲线,使曲线的切线、坐标轴和过切点与横轴平行的直线所围成的梯形面积等于a2,且曲线过点(a,a),a>0为常数.
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是()
随机试题
感官检验员必须具有正常的视觉、嗅觉和味觉的敏感性,因此,过度敏感的人更适合担任感官检验员。
只接受对侧皮质束支配的是
小儿腹泻严重,证见面白,肢冷,精神萎靡,哭而无泪,舌质红,舌光少苔,脉沉细,此时为
根据房屋的完损等级,可以将房屋分为()。
登记账簿时,发生的空行、空页一定要补充书写,不得注销。()
甲股份有限公司的增值税税率为13%,其于2019年4月1日销售给乙公司产品一批,价款为6000000元(含增值税)。至2019年12月31日甲公司仍未收到款项,甲公司对该应收款项计提了坏账准备300000元。2019年12月31日乙公司与甲公司协商,
下列各项中,属于直接生产费用的是()。
正确发挥意识能动作用的前提是()。
Ifsoldieringwasforthemoney,theSpecialAirService(SAS)andtheSpecialBoatService(SBS)wouldhavedisintegratedinre
Researchershaveknownthatsecondhandsmokecanbejustasdangerousfornonsmokersassmokingisforsmokers,butnowthere’s
最新回复
(
0
)