首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(88年)已知向量组α1,α2,…,αs(s≥2)线性无关.设β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1.试讨论向量组β1,β2,…,βs的线性相关性.
(88年)已知向量组α1,α2,…,αs(s≥2)线性无关.设β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1.试讨论向量组β1,β2,…,βs的线性相关性.
admin
2021-01-25
50
问题
(88年)已知向量组α
1
,α
2
,…,α
s
(s≥2)线性无关.设β
1
=α
1
+α
2
,β
2
=α
2
+α
3
,…,β
s-1
=α
s-1
+α
s
,β
s
=α
s
+α
1
.试讨论向量组β
1
,β
2
,…,β
s
的线性相关性.
选项
答案
假设有一组数χ
1
,χ
2
,…,χ
s
,使得 χ
1
β
1
+χ
2
β
2
+…+χ
s
β
s
=0 将题设的线性表示式代入上式并整理,得 (χ
s
+χ
1
)α
1
+(χ
1
+χ
2
)α
2
+…+(χ
s-1
+χ
s
)α
s
=0 由于α
1
,α
2
,…,α
s
线性无关,故有 [*] 此方程组的系数行列式为s阶行列式: [*] 因此有 (1)若s为奇数,则D=2≠0,故方程组(*)只有零解,即χ
1
,χ
2
,…,χ
s
必全为0.这时,β
1
,β
2
,…,β
s
线性无关; (2)若s为偶数,则D=0,故方程组(*)有非零解,即存在不全为0的一组数χ
1
,χ
2
,…,χ
s
,使χ
1
β
1
+χ
2
β
2
+…+χ
s
β
s
=0.这时,向量组β
1
,β
2
…,β
s
线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/3fx4777K
0
考研数学三
相关试题推荐
某保险公司对多年来的统计资料表明,在索赔户中被盗索赔户占20%,以X表示在随意抽查的100个索赔户中因被盗向保险公司索赔的户数.[附表]设Φ(x)是标准正态分布函数.写出X的概率分布;
设随机变量X服从正态分布N(μ,σ2)(σ>0),且二次方程y2+4y+X=0无实根的概率为1/2,则μ=__________.
设随机变量X在区间(0,1)上服从均匀分布,在X=x(0<x<1)的条件下,随机变量Y在区间(0,x)上服从均匀分布.求:概率P(X+Y>1).
设f(x)=求常数a与b的值,使f(x)在(一∞,+∞)上处处连续.
已知矩阵B=相似于对角矩阵.(1)求常数a的值;(2)用正交变换化二次型f(X)=XTBX为标准形,其中X(χ1,χ2,χ3)T为3维向量.
计算其中D是由圆心在点(a,a)、半径为a且与坐标轴相切的圆周的较短一段弧和坐标轴所围成的区域.
设η1,,…,ηs是非齐次线性方程组Ax=b的s个解,k1,…,ks为实数,满足k2+k2+…+ks=1。证明x=k1η1+k2η2+…+ksηs也是方程组的解。
(1995年)设f(x)、g(x)在区间[一a,a](a>0)上连续.g(x)为偶函数,且f(x)满足条件f(x)+f(一x)=A(A为常数)(1)证明∫-aaf(x)g(x)dx=A∫0ag(x)dx(2)利用(1)的结论计算定积分
(99年)设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
生产某种产品需要投甲、乙两种原料,x1和x2(单位:吨)分别是它们各自的投入量,则该产品的产出量为(单位:吨),其中常数α>0,β>0且α+β=1.如果两种原料的价格分别为p1与p2(单位:万元/吨).试问,当投入两种原料的总费用为P(单位:万元)时,两种
随机试题
液压转向式动力转向系统中,转向动力缸将机械能转化为液压能,使转向轮克服阻力矩转动做功。()
关于肺炎性假瘤的CT表现,下列描述错误的是
胸骨后痛可见于
主要用于城市给水、电站、水利工程及农田排灌的泵是( )离心泵。
由审批制到核准制是中国证券市场的一场深刻变革,它的意义在于()
王某于2000年到某国有企业上班。该企业及王某从当年开始参加失业保险,并连续缴费至2014年12月。2015年1月,王某失业。根据《社会保险法》,王某领取失业保险金的最长期限是()个月。
文件的连续性指()。
论基于场景的软件体系结构评估方法大型复杂软件系统开发所关注的问题之一是质量,在软件系统的早期设计阶段,选择合适的体系结构对系统许多关键质量属性(如可用性、可修改性、性能、安全性、易用性等)起着决定性的影响。不恰当的软件体系结构将给项目开发带来灾难
假定是偶校验,信息编码是1010010,则校验位代码是()。
______isa19thcenturyAmericannovelist.
最新回复
(
0
)