首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列条件不能保证n阶实对称阵A正定的是( )
下列条件不能保证n阶实对称阵A正定的是( )
admin
2019-01-23
31
问题
下列条件不能保证n阶实对称阵A正定的是( )
选项
A、A
-1
正定。
B、A没有负的特征值。
C、A的正惯性指数等于n。
D、A合同于单位矩阵。
答案
B
解析
A
-1
正定表明存在可逆矩阵C,使C
T
A
-1
C=E,两边求逆得到
C
-1
A(C
T
)
-1
=C
-1
A(C
-1
)
T
=E,
即A合同于E,A正定,因此A项不正确。
D选项是A正定的定义,因此D项不正确。
C选项表明A的正惯性指数等于n,故A是正定阵,因此C项也不正确。由排除法,故选B。
事实上,一个矩阵没有负的特征值,但可能有零特征值,而正定阵的特征值必须全是正数。
转载请注明原文地址:https://kaotiyun.com/show/VmP4777K
0
考研数学三
相关试题推荐
设A是m×n矩阵,对矩阵A作初等行变换得到矩阵B,证明:矩阵A的列向量与矩阵B相应的列向量有相同的线性相关性.
设A是n阶矩阵,ξ1,ξ2,…,ξt是齐次方程组Ax=0的基础解系,若存在ηi(i=1,2,…,t),使Aηi=ξi,证明:向量组ξ1,ξ2,…,ξt,η1,η2,…,ηt线性无关.
设A是n阶反对称矩阵.(1)证明:对任何n维列向量α,恒有αTAα=0.(2)证明:对任何非零常数c,矩阵A+cE恒可逆.
已知矩阵A=与对角矩阵相似,求An.
已知α1,α2,α3,α4是3维列向量,矩阵A=[α1,α2,2α3—α4+α2],B=[α3,α2,α1],C=[α1+2α2,2α2+3α4,α4+3α1],若|B|=—5,|C|=40,则|A|=__________.
设数列{an}=0满足条件:a0=3,a1=1,an—2一n(n一1)an=0(n≥2),S(x)是幂级数anxn的和函数.(1)证明S"(x)一S(x)=0;(2)求S(x)的表达式.
设n阶方阵A、B可交换,即AB=BA,且A有n个互不相同的特征值,证明:A与B有相同的特征向量.B相似于对角矩阵.
设三阶实对称矩阵A的特征值是1,2,3.A的属于特征值1,2的特征向量分别是α1=[一1,一1,1]T,α2=[1,一2,一1]T.(1)求A的属于特征值3的特征向量.(2)求矩阵A.
设随机变量X1和X2各只有一1,0,1等三个可能值,且满足条件P{Xi=一1}=P{Xi=1}=(i=1,2).试在下列条件下分别求X1和X2的联合分布.(1)P{X1X2=0}=1;(2)P{X1+X2=0}=
设f(x1,x2)=,则二次型的对应矩阵是________。
随机试题
注册会计师在判断审计证据是否充分时,通常需要考虑的因素有()
背景:高新技术企业新建厂区里一栋8层框架结构办公楼工程,采用公开招标的方式选定A施工单位作为施32,总承包,双方按《建设工程施工合同(示范文本)》GF一2013-0201签订施工合同。施工合同中约定钢筋、水泥等主材由业主供应,其他结构材料及装饰装修材料均
世界上第一台电子计算机于1946年在英国诞生。()
基金托管人应履行的职责有()。
为满足个人生活需要而购买产品和服务的所有个人和家庭,称为()。
小丁智力年龄为10岁,实际年龄为8岁,其比率智商是()。
对常兴市23家老人院的一项评估显示,爱慈老人院在疾病治疗水平方面受到的评价相当低,而在其他不少方面评价不错。虽然各老人院的规模大致相当,但爱慈老人院医生与住院老人的比率在常兴市的老人院中几乎是最小的。因此,医生数量不足是造成爱慈老人院在疾病治疗水平方面评价
关于犯罪目的和犯罪动机的下列表述中,正确的是( )。
[*]
WhosignedtheGreatCharterin1215?
最新回复
(
0
)