首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
admin
2016-10-24
81
问题
设A为n阶矩阵,A
11
≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A
*
b=0.
选项
答案
设非齐次线性方程组AX=b有无穷多个解,则r(A)<n,从而|A|=0,于是A
*
b=A
*
AX=|A|X=0.反之,设A
*
b=0,因为b≠0,所以方程组A
*
X=0有非零解,从而r(A
*
)<n,又A
11
≠0,所以r(A
*
)=1,且r(A)=n一1.因为r(A
*
)=1,所以方程组A
*
X=0的基础解系含有n一1个线性无关的解向量,而A
*
A=0,所以A的列向量组α
1
,α
2
,…,α
n
为方程组A
*
X=0的一组解向量,由A
11
≠0,得α
2
,…,α
n
线性无关,所以α
2
,…,α
n
是方程组A
*
X=0的基础解系.因为A
*
b=0,所以b可由α
2
,…,α
n
线性表示,也可α
1
,α
2
,…,α
n
线性表示,故r(A)=r(A)=n一1<n,即方程组AX=b有无穷多个解.
解析
转载请注明原文地址:https://kaotiyun.com/show/VsH4777K
0
考研数学三
相关试题推荐
图2.14中有三条曲线a,b,c,其中一条是汽车的位置函数的曲线,另一条是汽车的速度函数的曲线,还有一条是汽车的加速度函数的曲线,试确定哪条曲线是哪个函数的图形,并说明理由.
设f(x)为连续函数,.则Fˊ(2)等于()
证明如下的平行四边形法则:2(|a|2+|b|2)=|a+b|2+|a-b|2,说明这一法则的几何意义.
用适当的变换将下列方程化为可分离变量的方程,并求出通解:;(2)(x+y)2yˊ=1;(3)xyˊ+y=yln(xy);(4)xyˊ+x+sin(x+y)=0.
求下列向量组的一个极大线性无关组,并把其余向量用极大线性无关组线性表示:α1=(1,3,2,0),α2=(7,0,14,3),α3=(2,-1,0,1),α4=(5,1,6,2),α4=(2,-1,4,1).
考虑二次型f=x12+4x22+4x32+2λx1x2-2x1x3+4x2x3,问λ取何值时,f为正定二次型.
设总体X的概率密度为F(x)=1/2e-|x|(-∞<x<+∞),X1,X2,…,Xn为总体X的简单随机样本,其样本方差S2,则E(S2)=__________.
设X1,X2,…,Xm为来自二项分布总体B(n,p)的简单随机样本,X和S2分别为样本均值和样本方差.记统计量T=X-S2,则ET=___________.
设α1,α2,...,αs为线性方程组Ax=0的一个基础解系:β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,其中t1,t2为实常数.试问t1,t2满足什么关系时,β1,β2,...,βs,也为Ax=0的一个基础解
随机试题
外用可治口疮、咽痛的泻下药是
女性,45岁,左侧面部疼痛3个月,洗脸时易诱发,持续1~2分钟可缓解,颅神经查体未见异常。
与ALP的生理变化关系最大的是()
下列哪些情况下公司可以与劳动者解除合同而无须承担违约责任?()
关于曲阜孔庙,说法错误的是()。
根据我国民事诉讼法的规定,该纠纷应由()的法院管辖。如E公司提出财产保全的申请,受诉法院()采取保全措施。
A公司于2014年12月31日“预计负债——产品质量保证”科目贷方余额为50万元,2015年实际发生产品质量保证费用90万元,2015年12月31日预提产品质量保证费用110万元。下列说法中正确的是()。
林某有面积为140平方米的住宅一套,价值96万元。黄某有面积为120平方米的住宅一套,价值72万元。两人进行房屋交换,差价部分黄某以现金补偿林某。已知契税适用税率为3%,黄某应缴纳的契税税额为()万元。
初步核算,2008年某省实现生产总值(GDP)31072.1亿元,按可比价格计算,比上年增长12.19%,增幅回落2.2%。其中,第一产业增加值3002.7亿元,增长5.1%;第二产业增加值17702.2亿元,增长12.1%;第三产业增加值10367.2亿
Toarouter,aflowisa(66)ofpacketsthatsharethesameCharacterstics,suchastravelingthesame(67),usingthesame(68),hav
最新回复
(
0
)