首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若向量组a1,a2,a3,a4线性相关,且向量a4不可由向量组a1,a2,a3线性表示,则下列结论正确的是( ).
若向量组a1,a2,a3,a4线性相关,且向量a4不可由向量组a1,a2,a3线性表示,则下列结论正确的是( ).
admin
2019-11-25
76
问题
若向量组a
1
,a
2
,a
3
,a
4
线性相关,且向量a
4
不可由向量组a
1
,a
2
,a
3
线性表示,则下列结论正确的是( ).
选项
A、a
1
,a
2
,a
3
线性无关
B、a
1
,a
2
,a
3
线性相关
C、a
1
,a
2
,a
4
线性无关
D、a
1
,a
2
,a
4
线性相关
答案
B
解析
若a
1
,a
2
,a
3
线性无关,因为a
4
不可由a
1
,a
2
,a
3
线性表示,所以a
1
,a
2
,a
3
,a
4
线性无关,矛盾,故a
1
,a
2
,a
3
线性相关,选B.
转载请注明原文地址:https://kaotiyun.com/show/W9D4777K
0
考研数学三
相关试题推荐
f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=xe1-xf(x)dx(k>1).证明:至少存在一点ξ∈(0,1),使f’(ξ)=(1一ξ-1)f(ξ).
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
因k值不同,故分情况讨论:当k>1时,原式=[*]即积分收敛;当k=1时,原式=[*]即积分发散;当k<1时,原式=[*],即积分发散.综上,当k>1时,原积分为[*];当k≤1时,原积分发散.
已知α1=[1,一1,1]T,α2=[1,t,一1]T,α3=[t,1,2]T,β=[4,t2,一4]T,若β可由α1,α2,α3线性表示,且表示法不唯一,求t及β的表达式.
以y=7e3x+2x为一个特解的三阶常系数齐次线性微分方程是________.
微分方程y"+y’+y=的一个特解应具有形式(其中a,b为常数)()
设线性无关的函数y1(x),y2(x),y3(x)均是方程y"+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该方程的通解是()
设函数y(x)在[a,b]上连续,在(a,b)内二次可导,且满足y’’(x)+p(x)y’(x)-q(x)y(x)=f(x),y(a)=y(b)=0,其中函数p(x),q(x)与f(x)都在[a,b]上连续,且存在常数q0>0使得q(x)≥q0,存在
(1)取εn=1,由[*]=0,根据极限的定义,存在N>0,当n>N时,[*]收敛(收敛级数去掉有限项不改变敛散性),由比较审敛法得[*]收敛(收敛级数添加有限项不改变敛散性).(2)根据(1),当n>N时,有0≤an<bn,因为[*]发散,由比较审敛法
极限()
随机试题
设L为圆域D:x2+y2≤-2x的正向边界,则∮L(x3-y)dx+(x-y3)dy=().
今我睹子之难穷也,吾非至于子之门则殆矣,吾长见笑于大方之家。(《秋水》)吾非至于子之门则殆矣:____________
(2013年)年纯金属热导率随温度升高而()。
组成专业化工厂的功能单元时常分为()。
两根受压细长杆件,甲杆是两端固定,乙杆是两端铰支,除此之外,其他条件都相同,那么甲杆的临界力是乙杆的()倍。
根据一定标准和原则所划定的调整同一类社会关系的法律规范的总和被称为()。
我国的国家结构形式是()。
建设社会主义文化强国,要大力发展文化事业和文化产业。发展文化产业,要按照全面协调可持续的要求,推动文化产业跨越式发展,为推动科学发展提供重要支撑,在满足人民多样化精神文化需求的基础上,使之成为国民经济()
下述程序向文件输出的结果是______。#include<stdio.h>voidmain(){FILE*fp=fopen("TEST","wb");fprintf(fp,"%d%5.0f%c%%d",58,76
_______you’dliketobeanewmember,pleasesubmityourpersonalinformationbelow.
最新回复
(
0
)