首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性无关的函数y1(x),y2(x),y3(x)均是方程y"+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该方程的通解是 ( )
设线性无关的函数y1(x),y2(x),y3(x)均是方程y"+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该方程的通解是 ( )
admin
2018-09-20
74
问题
设线性无关的函数y
1
(x),y
2
(x),y
3
(x)均是方程y"+p(x)y’+q(x)y=f(x)的解,C
1
,C
2
是任意常数,则该方程的通解是 ( )
选项
A、C
1
y
1
+C
2
y
2
+y
3
B、C
1
y
1
+C
2
y
2
一(C
1
+C
2
)y
3
C、C
1
y
1
+C
2
y
2
一(1一C
1
一C
2
)y
3
D、C
1
y
1
+C
2
y
2
+(1一C
1
一C
2
)y
3
答案
D
解析
由于
C
1
y
1
+C
2
y
2
+(1一C
1
一C
2
)y
3
=C
1
(y
1
一y
3
)+C
2
(y
2
一y
3
)+y
3
,
其中y
1
一y
3
和y
2
一y
3
是原方程对应的齐次方程的两个线性无关的解,又y
3
是原方程的一个特解,所以选项(D)是原方程的通解.
转载请注明原文地址:https://kaotiyun.com/show/cAW4777K
0
考研数学三
相关试题推荐
设函数f0(x)在(一∞,+∞)内连续,fn(x)=∫0xfn一1(t)dt(n=1,2,…).证明:fn(x)=∫0xf0(t)(z一t)n一1dt(n=1,2,…);
设f(x)在区间[a,b]上满足a≤f(x)≤b,且有|f’(x)|≤q<1,令un=f(un一1)(n=1,2,…),u0∈[a,b],证明:级数(un+1一un)绝对收敛.
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5一α4的秩为4.
设A是n(n≥3)阶矩阵,证明:(A*)*=|A|n一2A.
设A为n阶矩阵且r(A)=n一1.证明:存在常数k,使得(A*)2=kA*.
设A为n阶矩阵,证明:r(A*)=其中,2≥2.
设函数f(x)可导且0≤f’(x)≤(k>0),对任意的x0,作xn+1=f(xn)(n=0,1,2,…),证明:存在且满足方程f(x)=x.
设试验成功的概率为,失败的概率为,独立重复试验直到成功两次为止.求试验次数的数学期望.
设随机变量X,Y同分布,X的密度为f(x)=设A={X>a)与B={Y>a)相互独立,且P(A+B)=.求:a;
设起点站上车人数X服从参数为λ(λ>0)的泊松分布,每位乘客中途下车的概率为p(0<p<1),且中途下车与否相互独立,以Y表示中途下车人数.求(X,Y)的概率分布.
随机试题
简述报道组织的工作内容。
学校体育的根本任务是
儿童体内维生素D不足使钙、磷代谢紊乱的疾病是
既攻毒杀虫,又利水通便的药物是()。
汇付方式采用的是逆汇方法。()
行政监察机关对公安机关及其人民警察的监督,属于()。
2013年末,等级公路总里程占公路总里程的:
一名教师看到一个学生在上课的时候扮鬼脸却没有理睬他,根据斯金纳的理论,这名教师之所以这么做依据的规律是
删除视图salary的命令是______。
Youareamanagerinaninternationalcompany.Youwanttoreducethecompany’sspendingoncourierservices.Writeanemail
最新回复
(
0
)