首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)∈c[a,b],在(a,b)内二阶可导. 若f(A)=0,f(b)<0,f+’(a)>0.证明:存在ξ∈(12,6),使得f(ξ)f’’(ξ)+f’2(ξ)=0.
设f(x)∈c[a,b],在(a,b)内二阶可导. 若f(A)=0,f(b)<0,f+’(a)>0.证明:存在ξ∈(12,6),使得f(ξ)f’’(ξ)+f’2(ξ)=0.
admin
2017-03-02
48
问题
设f(x)∈c[a,b],在(a,b)内二阶可导.
若f(A)=0,f(b)<0,f
+
’(a)>0.证明:存在ξ∈(12,6),使得f(ξ)f’’(ξ)+f’
2
(ξ)=0.
选项
答案
因为f
+
’(A)>0,所以存在c∈(a,b),使得f(C)>f(A)=0,因为f(C)f(B)<0,所以存在x
0
∈(c,b),使得f(x
0
)=0.因为f(A)=f(x
0
)=0,由罗尔定理.存在x
1
∈(a,x
0
),使得f’(x
1
)=0.令φ(x)=f(x)f’(x),由φ(A)=φ(x
1
)=0,根据罗尔定理,存在ξ∈(a,x
1
)c(a,b),使得φ’(ξ)=0.而φ’(x)=f(x)f’’(x)+f’
2
(x),所以f
2
(ξ)f’’(ξ)+f’
2
(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/WHH4777K
0
考研数学三
相关试题推荐
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,p+2)T,α4=(-2,-6,10,P)T.P为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组.
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求正交变换x=Qy,把f(x1,x2,x3)化成标准形;
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设总体X的概率密度为其中θ为未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.求θ的矩估计量;
设总体X一N(μ,32),其中μ为未知参数,X1,X2,…,X16为来自总体X的样本,X为样本均值.如果对于检验Hoμ=μo,取拒绝域,在显著水平a=0.05下,k的值为_____.(附φ(1.65)=0.95,φ(1.96)=0.975)
设总体X的概率密度为p(x,λ)=其中A>0为未知参数,a>0是已知常数,试根据来自总体X的简单随机样本X1,X2,…,X,求λ的最大似然估计量
函数f(x)=cosx+xsinx在(一2π,2π)内的零点个数为
z’x(x0,y0)=0和z’y(x0,y0)=0是函数z=z(x,y)在点(x0,y0)处取得极值的()
设且f和g具有连续偏导数,求
随机试题
参与联合脱氨基作用的酶是
Aseachblackcreature______andflappedawayintothegrayingsky,shewatchedit,tearsinhereyes.
分析所需的资料均来自研究对象的实际治疗方案的成本和效果的是研究结果的外部真实性较差的是
属于按主电路工作方式分类的X线机是
患者,男性,十二指肠溃疡患者,突然发生呕吐,所吐物为昨天吃的食物。引发原因是
公文生效的时间是()。
Americansarepoundoftheirvarietyandindividuality,yettheyloveandrespectfewthingsmorethanauniform,whetheritis;
论述我国中央人民政府和特别行政区的关系。(2013法简32、2017法论37)
Accordingtothepassage,whichofthefollowingisuncommonintheUS?
LookatthestatementsbelowandatthefiveextractsfromanarticleaboutSwindlinginInternationalTrade.Whicharticle(A,B
最新回复
(
0
)