首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)的系数矩阵为A=(Ⅱ)的一个基础解系为η1=(2,-1,a+2,1)T,η2=(-1,2,4,a+8)T. (1)求(Ⅰ)的一个基础解系; (2)口为什么值时(Ⅰ)和(Ⅱ)有公共非零解?此时求
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)的系数矩阵为A=(Ⅱ)的一个基础解系为η1=(2,-1,a+2,1)T,η2=(-1,2,4,a+8)T. (1)求(Ⅰ)的一个基础解系; (2)口为什么值时(Ⅰ)和(Ⅱ)有公共非零解?此时求
admin
2019-03-21
102
问题
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)的系数矩阵为A=
(Ⅱ)的一个基础解系为η
1
=(2,-1,a+2,1)
T
,η
2
=(-1,2,4,a+8)
T
.
(1)求(Ⅰ)的一个基础解系;
(2)口为什么值时(Ⅰ)和(Ⅱ)有公共非零解?此时求出全部公共非零解.
选项
答案
(1)把(Ⅰ)的系数矩阵用初等行变换化为简单阶梯形矩阵 [*] 得到(Ⅰ)的同解方程组[*] 对自由未知量χ
3
,χ
4
赋值,得(Ⅰ)的基础解系γ
1
=(5,-3,1,0)
T
,γ
3
=(-3,2,0,1)
T
. (2)(Ⅱ)的通解为c
1
η
1
+c
2
η
2
=(2c
1
-c
2
,-c
1
+2c
2
,(a+2)c
1
+4c
2
,c
1
+(a+8)c
2
)
T
.将它代入(Ⅰ),求出为使c
1
η
1
+c
2
η
2
也是(Ⅰ)的解(从而是(Ⅰ)和(Ⅱ)的公共解),c
1
,c
2
应满足的条件为: [*] 于是当a+1≠0时,必须c
1
=c
2
=0,即此时公共解只有零解. 当a+1=0时,对任何c
1
,c
2
,c
1
η
1
+c
2
η
2
都是公共解.从而(Ⅰ),(Ⅱ)有公共非零解.此时它们的公共非零解也就是(Ⅱ)的非零解:c
1
η
1
+c
2
η
2
,c
1
,c
1
不全为0.
解析
转载请注明原文地址:https://kaotiyun.com/show/WLV4777K
0
考研数学二
相关试题推荐
设两个相互独立的随机变量X和Y的方差分别为4和2,则随机变量3X一2Y的方差为()
设函数u=u(x,y)满足及(x,2x)=x,u1’(x,2x)=x2,u有二阶连续偏导数,则u11"(x,2x)=()
设f(x)在R上是以T为周期的连续奇函数,则下列函数中不是周期函数的是().
设函数f(x)反函数g(x),且f(a)=3,f’(a)=1,f"(a)=2,求g"(3).
设f(x)在(a,b)内可导,且x0∈(a,b)使得f’(x)又f(x0)>0(<0),(如图4.13),求证:f(x)在(a,b)恰有两个零点.
求下列不定积分:(Ⅰ)∫arcsinx.arccosxdx;(Ⅱ)∫x2sin2xdx.
设f(x)在[1,+∞)可导,[xf(x)]≤-kf(x)(x>1),在(1,+∞)的子区间上不恒等,又f(1)≤M,其中k,M为常数,求证:f(x)<(x>1).
设3阶矩阵A的各行元素之和都为2,又α1=(1,2,2)T和α2=(0,2,1)T分别是(A-E)X=0的(A+E)X=0的解.(1)求A的特征值与特征向量.(2)求矩阵A.
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。问k为何值时,f(x)在x=0处可导。
随机试题
临床用药研究的内容包括:
下列哪种疾病腹部平片不能诊断
男性,36岁,下肢静脉曲张。医生检查时让病人平卧、下肢抬高,使下肢静脉排空,在大腿根部扎止血带,压迫大隐静脉,之后站立,立即松开止血带,进行观察。此项检查的目的是了解
A、只准从事医疗业务B、只准从事预防业务C、可以从事相应的医疗、预防、保健业务D、不得从事医师执业活动E、可以重新申请医师执业注册医师经执业注册后
县级以上安全生产监督管理部门对生产经营单位责令限期改正,并处1万元以上3万元以下罚款的情形包括()。
下列关于计算未来现金流量现值中折现率的说法中,错误的是()。
准贷记卡透支享受免息还款期。()
下列关于随机误差的描述不正确的是()
简述比例税率、累进税率和定额税率各自的优缺点及适用范围。
设Ω1:x2+y2+z2≤R2,z≥0;Ω2:x2+y2+z2≤R2,且x≥0,y≥0,z≥0.则有()
最新回复
(
0
)