首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)的系数矩阵为A=(Ⅱ)的一个基础解系为η1=(2,-1,a+2,1)T,η2=(-1,2,4,a+8)T. (1)求(Ⅰ)的一个基础解系; (2)口为什么值时(Ⅰ)和(Ⅱ)有公共非零解?此时求
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)的系数矩阵为A=(Ⅱ)的一个基础解系为η1=(2,-1,a+2,1)T,η2=(-1,2,4,a+8)T. (1)求(Ⅰ)的一个基础解系; (2)口为什么值时(Ⅰ)和(Ⅱ)有公共非零解?此时求
admin
2019-03-21
51
问题
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)的系数矩阵为A=
(Ⅱ)的一个基础解系为η
1
=(2,-1,a+2,1)
T
,η
2
=(-1,2,4,a+8)
T
.
(1)求(Ⅰ)的一个基础解系;
(2)口为什么值时(Ⅰ)和(Ⅱ)有公共非零解?此时求出全部公共非零解.
选项
答案
(1)把(Ⅰ)的系数矩阵用初等行变换化为简单阶梯形矩阵 [*] 得到(Ⅰ)的同解方程组[*] 对自由未知量χ
3
,χ
4
赋值,得(Ⅰ)的基础解系γ
1
=(5,-3,1,0)
T
,γ
3
=(-3,2,0,1)
T
. (2)(Ⅱ)的通解为c
1
η
1
+c
2
η
2
=(2c
1
-c
2
,-c
1
+2c
2
,(a+2)c
1
+4c
2
,c
1
+(a+8)c
2
)
T
.将它代入(Ⅰ),求出为使c
1
η
1
+c
2
η
2
也是(Ⅰ)的解(从而是(Ⅰ)和(Ⅱ)的公共解),c
1
,c
2
应满足的条件为: [*] 于是当a+1≠0时,必须c
1
=c
2
=0,即此时公共解只有零解. 当a+1=0时,对任何c
1
,c
2
,c
1
η
1
+c
2
η
2
都是公共解.从而(Ⅰ),(Ⅱ)有公共非零解.此时它们的公共非零解也就是(Ⅱ)的非零解:c
1
η
1
+c
2
η
2
,c
1
,c
1
不全为0.
解析
转载请注明原文地址:https://kaotiyun.com/show/WLV4777K
0
考研数学二
相关试题推荐
设f(x)在[0,b]可导,f’(x)>0(x∈(0,b)),t∈[0,b],问t取何值时,图4.10中阴影部分的面积最大?最小?
求函数f(x)=在区间[e,e2]上的最大值.
建一容积为V0的无盖长方体水池,问其长、宽、高为何值时有最小的表面积.
求由曲线F:x=a(t-sint),y=a(1-cost)(0≤t≤2π)及y=0所围图形绕Ox轴旋转所成立体的体积.
求常数a,使得向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但是β1,β2,β3不可用α1,α2,α3线性表示.
设A为n阶正交矩阵,α和β都是n维实向量,证明:(1)内积(α,β)=(Aα,Aβ).(2)长度‖Aα‖=‖α‖.
设(1)求作对角矩阵D,使得B~D.(2)实数k满足什么条件时B正定?
求一个以y1=tet,y2=sin2t为其两个特解的四阶常系数齐次线性微分方程,并求其通解.
设一阶非齐次线性微分方程y’+p(x)y=Q(x)有两个线性无关的解y1,y2,若αy1+βy2也是该方程的解,则应有α+β=____________.
设f(χ)=,求f(χ)的间断点并判断其类型.
随机试题
对于在()内造成严重环境噪声污染的企业事业单位,限期治理。
下列“诸海”中错误的是
A、疏风解表,清热通便B、补脾柔肝,祛湿止泻C、清胆利湿,和胃化痰D、寒热平调,散结健脾E、益气健脾,渗湿止泻痛泻要方的功用是
国际贸易使用议付信用证支付时,如果议付行议付后,因故不能向开证行索得货款,议付行(保兑行除外)有权对()行使追索权。
《三字经》里有“教不严,师之惰”的提法,说明教师应该()。
教师职业劳动的特点包括()。
己知一棵有2011个结点的树,其叶结点个数为116,该树对应的二叉树中无右孩子的结点个数是_______。
资本积累的本质,就是资本家不断利用无偿占有的工人创造的剩余价值,来扩大自己的资本规模,进一步扩大和加强对工人的剥削和统治。资本积累的源泉是剩余价值,资本积累规模的大小取决于()
设关系R(U),X,Y∈U,X→Y是R的一个函数依赖,如果存在X∈X,使X’→Y成立,则称函数依赖X→Y是【】函数依赖。
WhereIstheNewsLeadingUs?NotlongagoIwasaskedtojoininapublicsymposiumontheroleoftheAmericanpress.Two
最新回复
(
0
)