首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)的系数矩阵为A=(Ⅱ)的一个基础解系为η1=(2,-1,a+2,1)T,η2=(-1,2,4,a+8)T. (1)求(Ⅰ)的一个基础解系; (2)口为什么值时(Ⅰ)和(Ⅱ)有公共非零解?此时求
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)的系数矩阵为A=(Ⅱ)的一个基础解系为η1=(2,-1,a+2,1)T,η2=(-1,2,4,a+8)T. (1)求(Ⅰ)的一个基础解系; (2)口为什么值时(Ⅰ)和(Ⅱ)有公共非零解?此时求
admin
2019-03-21
100
问题
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)的系数矩阵为A=
(Ⅱ)的一个基础解系为η
1
=(2,-1,a+2,1)
T
,η
2
=(-1,2,4,a+8)
T
.
(1)求(Ⅰ)的一个基础解系;
(2)口为什么值时(Ⅰ)和(Ⅱ)有公共非零解?此时求出全部公共非零解.
选项
答案
(1)把(Ⅰ)的系数矩阵用初等行变换化为简单阶梯形矩阵 [*] 得到(Ⅰ)的同解方程组[*] 对自由未知量χ
3
,χ
4
赋值,得(Ⅰ)的基础解系γ
1
=(5,-3,1,0)
T
,γ
3
=(-3,2,0,1)
T
. (2)(Ⅱ)的通解为c
1
η
1
+c
2
η
2
=(2c
1
-c
2
,-c
1
+2c
2
,(a+2)c
1
+4c
2
,c
1
+(a+8)c
2
)
T
.将它代入(Ⅰ),求出为使c
1
η
1
+c
2
η
2
也是(Ⅰ)的解(从而是(Ⅰ)和(Ⅱ)的公共解),c
1
,c
2
应满足的条件为: [*] 于是当a+1≠0时,必须c
1
=c
2
=0,即此时公共解只有零解. 当a+1=0时,对任何c
1
,c
2
,c
1
η
1
+c
2
η
2
都是公共解.从而(Ⅰ),(Ⅱ)有公共非零解.此时它们的公共非零解也就是(Ⅱ)的非零解:c
1
η
1
+c
2
η
2
,c
1
,c
1
不全为0.
解析
转载请注明原文地址:https://kaotiyun.com/show/WLV4777K
0
考研数学二
相关试题推荐
下列函数在点x=0处均不连续,其中点x=0是f(x)的可去间断点的是[].
求函数f(x)=(2-t)e-tdt的最值.
设y=y(x)由方程组(*)确定,求
设f(x)=讨论f(x)与g(x)的极值.
过曲线y=x2(x≥0)上某点A作一切线,使之与曲线及x轴围成图形面积为,求:(Ⅰ)切点A的坐标;(Ⅱ)过切点A的切线方程;(Ⅲ)由上述图形绕x轴旋转的旋转体的体积.
在上半平面求一条凹曲线(图6.2),使其上任一点P(x,y)处的曲率等于此曲线在该点的法线PQ长度的倒数(Q是法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
证明:=0.
设(Ⅰ)和(Ⅱ)都是3元非齐次线性方程组,(Ⅰ)有通解ξ1+c1η1+c2η2,ξ1=(1,0,1),η1=(1,1,0),η2=(1,2,1);(Ⅱ)有通解ξ2+cη,ξ2=(0,1,2),η=(1,1,2).求(Ⅰ)和(Ⅱ)的公共解.
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(A)=f(B)=g(a)=g(b)=0,试证:在开区间(a,b)内至少存在一点ξ,使
设A是一个五阶矩阵,A*是A的伴随矩阵,若η1,η2是齐次线性方程组Ax=0的两个线性无关的解,则r(A*)=___________。
随机试题
A、Finishthembeforetheygettired.B、Tacklethemostdifficulttaskfirst.C、Startwithsomethingtheyenjoy.D、Focusonthem
专家判断法
在我国建立社会主义市场经济体制,就是要()
药品生产管理规范仅对药品的生产环节进行规范管理。()
女性,40岁。左侧上颌后牙出现自发性、持续性钝痛4天。咬硬物时疼痛明显。口腔检查:左上5合面深龋,探诊(-),叩诊(++),松动I°,牙周检查(-)。温度刺激试验无反应。拟诊
据国际有关文献资料介绍,建设工程项目10%~33%的费用增加与( )存在的问题有关。
考虑戒毒的特殊性,强制戒毒所不允许戒毒人员的家属或者所在单位的有关人员探访。( )
2018年8月21日至22日,()在北京召开。习近平总书记出席会议并发表重要讲话,他强调完成新形势下该工作的使命任务,必须以新时代中国特色社会主义思想和党的十九大精神为指导,增强“四个意识”、坚定“四个自信”,自觉承担起举旗帜、聚民心、育新人、兴
一词当然可以多义,但一词的多义应当是相近的。例如,“帅”可以解释为“元帅”,也可以解释为“杰出”,这两个含义是相近的。由此看来,把“酷(cool)”解释为“帅”实在是英语中的一种误用,应当加以纠正,因为“酷”在英语中的初始含义是“凉爽”,和“帅”丝毫不相及
A.itsdetectingpowerB.millionsoflightyearsawayinspaceC.thelocationoftheVLTD.asanexampleE.thebirthofthe
最新回复
(
0
)