首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[1,+∞)可导,[xf(x)]≤-kf(x)(x>1),在(1,+∞)的子区间上不恒等,又f(1)≤M,其中k,M为常数,求证:f(x)<(x>1).
设f(x)在[1,+∞)可导,[xf(x)]≤-kf(x)(x>1),在(1,+∞)的子区间上不恒等,又f(1)≤M,其中k,M为常数,求证:f(x)<(x>1).
admin
2017-05-31
90
问题
设f(x)在[1,+∞)可导,
[xf(x)]≤-kf(x)(x>1),在(1,+∞)的
子区间上不恒等,又f(1)≤M,其中k,M为常数,求证:f(x)<
(x>1).
选项
答案
已知xf’(x)+(k+1)f(x)≤0(x>1),在(1,+∞)[*]子区间上不恒为零,要证f(x)x
k+1
<M(x>1).令F(x)=f(x)x
k+1
=>F’(x)=x
k+1
f’(x)+(k+1)x
k
f(x)=x
k
[xf’(x)+(k+1)f(x)]≤0(x>1),在(1,+∞)[*]子区间上不恒为零,又F(x)在[1,+∞)连续=>F(x)在[1,+∞)单调下降=>F(x)<F(1)=f(1)≤M (x>1).
解析
转载请注明原文地址:https://kaotiyun.com/show/uMt4777K
0
考研数学二
相关试题推荐
用集合的描述法表示下列集合:(1)大于5的所有实数集合(2)方程x2-7x+12=0的根的集合(3)圆x2+y2=25内部(不包含圆周)一切点的集合(4)抛物线y=x2与直线x—y=0交点的集合
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:(1)存在η∈(1/2,1),使f(η)=η;(2)对任意实数λ,必存在ε∈(0,η),使得fˊ(ε)-λ[f(ε)-ε]=1
证明:函数在(0,0)点连续,fx(0,0),fy(0,0)存在,但在(0,0)点不可微.
下列函数在给定区间上是否满足罗尔定理的所有条件?如满足,请求出定理中的数值ε
证明函数y=sinx-x单调减少.
曲线y=(x-1)2(x-3)2的拐点个数为
若f(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:存在两个不同的点η,ξ∈(0,1),使得f’(η)f’(ξ)=1.
随机试题
属于附肢骨的选项是
一般纳税企业购入货物支付的增值税进项税额,无论是否可以抵扣,均应先通过“应交税费——应交增值税(进项税额)”科目核算,待确定不可抵扣时,再从“应交税费——应交增值税(进项税额转出)”科目转出。 ( )
将带花的白玉兰枝条插入稀释的红墨水中,一段时间后花瓣变粉,与这一现象直接相关的组织是()。
建构主义者认为,知识是对现实的()
备课的重要意义是()。
新发展理念是中国共产党关于发展理论的重大升华,是习近平新时代中国特色社会主义经济思想的主要内容。关于新发展理念,下列说法错误的是()。
2018年1月8日,国家科学技术奖励大会在北京举行。共同获得2017年度国家最高科学技术奖的是:
某市一项对交谊舞爱好者的调查表明,那些称自己每周固定去跳交谊舞1~2次的人近三年来由28%增加到35%,而对该市多数舞厅的调查则显示,近三年来交谊舞厅的顾客人数明显下降。以下各项如果为真,都有助于解释上述看来矛盾的断定,除了:
C
Afewyearsagoitwasfashionabletospeakofagenerationgap,adivisionbetweenyoungpeopleandtheirelders.Parentscompl
最新回复
(
0
)