首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αr和β1,β2,…,βs是两个线性无关的n维向量.证明:向量组{α1,α2,…,αr;β1,β2,…,βs}线性相关存在非零向量r,它既可用α1,α2,…,αr线性表示,又可用β1,β2,…,βs线性表示.
设α1,α2,…,αr和β1,β2,…,βs是两个线性无关的n维向量.证明:向量组{α1,α2,…,αr;β1,β2,…,βs}线性相关存在非零向量r,它既可用α1,α2,…,αr线性表示,又可用β1,β2,…,βs线性表示.
admin
2017-06-08
65
问题
设α
1
,α
2
,…,α
r
和β
1
,β
2
,…,β
s
是两个线性无关的n维向量.证明:向量组{α
1
,α
2
,…,α
r
;β
1
,β
2
,…,β
s
}线性相关<=>存在非零向量r,它既可用α
1
,α
2
,…,α
r
线性表示,又可用β
1
,β
2
,…,β
s
线性表示.
选项
答案
“=>”因为{α
1
,α
2
,…,α
r
;β
1
,β
2
,…,β
s
}线性相关,所以存在c
1
,c
2
,…,c
r
,c
r+1
,…,c
r+s
不全为0,使得 c
1
α
1
+c
2
α
2
+…+c
r
α
r
+c
r+1
β
1
+c
r+2
β
2
+…+c
r+s
β
s
=0 记γ=c
1
α
1
+c
2
α
2
+…+c
r
α
r
-(c
r+1
β
1
+c
r+2
β
2
+…+c
r+s
β
s
), 则γ≠0(否则由α
1
,α
2
,…,α
r
和β
1
,β
2
,…,β
s
都线性无关,推出c
1
,c
2
,…,c
r
,c
r+1
,…,c
r+s
全为0),并且它既可用α
1
,α
2
,…,α
r
表示,又可用β
1
,β
2
,…,β
s
表示. “<=”设γ≠0,它既可用α
1
,…,α
r
表示,又可用β
1
,…,β
s
表示. 记γ=c
1
α
1
+c
2
α
2
+…+c
r
α
s
=t
1
β
1
+t
2
β
2
+…+t
s
β
s
,则c
1
,c
2
,…,c
r
和t
1
,t
2
,…,t
s
都不全为0, 而 c
1
α
1
+c
2
α
2
+…+c
r
α
s
-t
1
β
1
-t
2
β
2
-…-t
s
β
s
=0. 根据定义,{α
1
,α
2
,…,α
r
;β
1
,β
2
,…,β
s
}线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/40t4777K
0
考研数学二
相关试题推荐
[*]
e/2-1
[*]应先在xy平面上用阴影标出(X,Y)联合分布密度函数不等于0的部分,同时画出直线x+y=z=常数,根据与阴影部分相交的不同情况分为有关不同z的5种情况,然后进行计算.
证明曲线有位于同一直线上的三个拐点.
设n,元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解.
设矩阵A与B相似,且求a,b的值;
设4维向量组α1=(1+α,1,1,1)T,α2=(2,2+α,2,2)T,α3=(3,3,3+α,3)T,α4=(4,4,4,4+α)T,问口为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.将β1,β2,β3用α1,α2,α3线性表示.
随机试题
什么是铸铁?铸铁具有哪些性能?
决定社会主义核心价值体系的性质和方向的是()。
Pickouttheappropriateexpressionfromtheeightchoicesandcompletethefollowingdialoguebyblackeningthecorrespondingl
何时使用生理维持液
A.有效率B.患病率C.相对危险度D.保护率E.抗体阳性率对新生儿进行乙肝疫苗接种,评价疫苗效果时最宜选用的指标是()
患儿,男,5岁。进食时不慎跌倒,筷子戳破腭部2小时。急诊检查见软腭有一约15mm长创口,为贯穿伤。患儿清醒,检查合作。如同时存在硬腭组织缺损,创口较大,此时的局部处理为
报关企业1年内代理报关的货物因侵犯知识产权而被海关没收达3次的,适用C类管理。()
某制药企业2005年销售收入5000万元,销售成本2500万元,销售税金及附加500万元,销售费用1200万元,管理费用600万元,投资收益-20万元,营业外支出100万元,企业境内外利润合计为80万元;注册会计师检查到下列其他资料:(1)
《上海市:旅游条例》规定:旅游者与旅游经营者发生争议的,旅游者可以通过以下途径篇决()。
民事主体在法律允许的范围内有完全的意志自由.自主实施民事法律行为.参加民事法律关系,任何单位和个人都不得非法干预。这体现了()。
最新回复
(
0
)