首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶非零矩阵,且aij=Aij(=1,2,3),证明A可逆,并求|A|.
已知A是3阶非零矩阵,且aij=Aij(=1,2,3),证明A可逆,并求|A|.
admin
2019-01-23
26
问题
已知A是3阶非零矩阵,且a
ij
=A
ij
(
=1,2,3),证明A可逆,并求|A|.
选项
答案
因为A是非零矩阵,不妨设a
11
≠0,那么按第一行展开,并将a
ij
=A
ij
代入,即有 |A|=a
11
A
11
+a
12
A
12
+a
13
A
13
=[*]>0, 所以,A可逆. [*] 即AT=A
*
,那么对AA
*
=|A|E两边取行列式,有 |A|
2
=|A|.|A
T
|=||A|E|=|A|
3
, 得|A|
2
(|A|-1)=0.从而|A|=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/WMM4777K
0
考研数学一
相关试题推荐
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,b),使=0.
设n元线性方程组Aχ=b,其中(1)当a为何值时,该方程组有唯一解,并求χ1;(2)当a为何值时,该方程组有无穷多解,并求通解.
已知二次型f(χ1,χ2,χ3)=(1-a)χ12+(1-a)χ22+2χ32+2(1+a)χ1χ2的秩为2.(1)求a的值;(2)求正交变换χ=Qy,把f(χ1,χ2,χ3)化为标准形;(3)求方程f(χ1,χ2,χ3)=0
计算I=∮L(y2一z2)dx+(2z2一x2)dy+(3x2一y2)dz,其中L是平面x+y+z=2与柱面|x|+|y|=1的交线,从z轴正向看去,L为逆时针方向.
设A=已知线性方程组Ax=b存在2个不同的解,(Ⅰ)求λ,a;(Ⅱ)求方程组Ax=b的通解.
从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y(从海平面算起)与下沉速度v之间的函数关系。设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用。设仪器的质量为m,体积为B,海水比重为ρ,仪器所受的阻力与下沉速
设曲线=1(0<a<4)与x轴、y轴所围成的图形绕x轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
计算行列式.
问λ取何值时,齐次线性方程组,有非零解.
设有向量组(I):α1=(1,1,1,3)T,α2=(一1,一3,5,1)T,α3=(3,2,一1,t+2)T,α4=(一2,一6,10,t)T.(1)t为何值时,(I)线性无关?并在此时将向量α=(4,1,6,10)T用(I)线性表出;
随机试题
必须提交债务人承兑方可生效的商业票据是
方程y’=ex+y的通解为()
成人心脏正常二尖瓣瓣口面积是
(2010年)总线能为多个部件服务,它可分时地发送与接收各部件的信息,所以,可以把总线看成是()。
在高层建筑施工质量管理中,作为质量控制重点的有()。
一种汇率通常有( )位有效数字。
某企业与银行商定的周转信贷额为200万元,承诺费率为0.5%,借款企业年度内使用了120万元,那么,借款企业向银行支付承诺费()元。
阅读文本材料和相关要求,完成第19—21题。莫怀戚《散步》原文我们在田野散步:我,我的母亲,我的妻子和儿子。母亲本不愿出来的。她老了,身体不好,走远一点就觉得很累。我说,正因为如此,才应该多走走,母亲信服地点点头,便去拿外套。
兴乐镇拥有常住人口5876人,其中选民4145人。在选举新一届人民代表大会代表的过程中,有2273人参加投票。宫某作为代表候选人得票最多,共获得选票1096张。对兴乐镇的该次选举效力说法正确的是()。
ToHelptheKids,ParentsGoBacktoSchool[A]Forafewyearsnow,everyparentofanewbornbabyintheSouthFloridadist
最新回复
(
0
)