首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2一α3,向量b=α1+α2+α3+α4,求方程组Ax=b的通解。
设矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2一α3,向量b=α1+α2+α3+α4,求方程组Ax=b的通解。
admin
2017-12-29
51
问题
设矩阵A=(α
1
,α
2
,α
3
,α
4
),其中α
2
,α
3
,α
4
线性无关,α
1
=2α
2
一α
3
,向量b=α
1
+α
2
+α
3
+α
4
,求方程组Ax=b的通解。
选项
答案
已知α
2
,α
3
,α
4
线性无关,则r(A)≥3。又由α
1
,α
2
,α
3
线性相关可知α
1
,α
2
,α
3
,α
4
线性相关,故r(A)≤3。 终上所述,r(A)=3,从而原方程组的基础解系所含向量个数为4—3=1。又因为 α
1
=2α
2
一α
3
[*]α
1
一2α
2
+α
3
=0[*](α
1
,α
2
,α
3
,α
4
)[*] 所以x=(1,一2,1,0)
T
是方程组Ax=0的基础解系。 又由b=α
1
+α
2
+α
3
+α
4
可知x=(1,1,1,1)
T
是方程组Ax=b的一个特解。 于是原方程组的通解为 x=(1,1,1,1)
T
+c(1,一2,1,0)
T
,c∈R。
解析
转载请注明原文地址:https://kaotiyun.com/show/WQX4777K
0
考研数学三
相关试题推荐
积分=________.
求微分方程(4一x+y)dx一(2一x—y)dy=0的通解.
设A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,证明下列结论:aij=AijATA=E且|A|=1;
若函数φ(x)及ψ(x)是n阶可微的,且φ(k)(x0)=ψ(k)(x0),k=0,1,2,…,n一1.又x>x0时,φ(n)(x)>ψ(k)(x0).试证:当x>x0时,φ(x)>ψ(x).
假设某季节性商品,适时地售出1千克可以获利s元,季后销售每千克净亏损t元。假设一家商店在季节内该商品的销售量X(千克)是一随机变量,并且在区间(a,b)内均匀分布。问季初应安排多少这种商品,可以使期望销售利润最大?
计算不定积分
设A,B,C为常数,B2一AC>0,A≠0.u(x,y)具有二阶连续偏导数。试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程
求函数z=x2+y2+2x+y在区域D:x2+y2≤1上的最大值与最小值.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n一中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=记X一(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
设X和Y独立同分布,且均服从区间(0,1)上的均匀分布,求的分布函数F(u)。
随机试题
痰热内闭的目态是脾肾两亏的目态是
易与生物大分子形成氢键强吸电子基团,影响电荷分布和脂溶性
根据合伙企业法律制度的规定,下列属于普通合伙企业合伙人当然退伙的情形是()。
学校在每年的“阳光体育”活动项目中,都要举办一次田径运动会,如果请你编排这次运动会秩序册,试述学校田径运动会秩序册主要包含哪些内容?
以学得的经验为基础的认知能力,与文化知识、经验的积累有关的智力是()
关于交通肇事罪,下列说法不正确的是()
以下程序段中Do...Loop循环执行的次数为【】。程序执行完毕后,n的值为【】。PrivateSubCommand1_Click()n=5DoIfnMod2=0Then
设二叉树的后序序列为DGHEBIJFCA,中序序列为DBGEHACIFJ。则前序序列为
在进行逻辑设计时,将E-R图中实体之间联系转换为关系数据库的
他很想知道船到底为什么能在水面上浮着。
最新回复
(
0
)