首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶正定矩阵,证明: A-1仍为正定矩阵;
设A为n阶正定矩阵,证明: A-1仍为正定矩阵;
admin
2021-07-27
65
问题
设A为n阶正定矩阵,证明:
A
-1
仍为正定矩阵;
选项
答案
方法一 用合同法.依题设,已知A为n阶正定矩阵,因此必与单位矩阵合同。即存在可逆矩阵C,使得A=C
T
C,从而有A
-1
=C
-1
(C
T
)
-1
=C
-1
(C
-1
)
T
,知存在可逆矩阵Q=(C
-1
)
T
,使得A
-1
=Q
T
Q,因此,A
-1
仍为正定矩阵. 方法二 用特征值法.依题设,已知A为n阶正定矩阵,因此,A的全部特征值为正,即λ
i
>0(i=1,2,…,n),因为A
T
=A,则(A
-1
)
T
=(A
T
)
-1
=A
-1
,即A
-1
为对称矩阵,又A
-1
的特征值为A的特征值的倒数,即为λ
i
-1
>0,从而知A
-1
的特征值全部为正,因此,A
-1
仍为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/WQy4777K
0
考研数学二
相关试题推荐
设A,B均是n阶实对称矩阵,则A,B合同的充分必要条件是()
设函数f(x)连续,则在下列变限积分定义的函数中,必为偶函数的是()
函数f(x)=的无穷间断点的个数是()
已知向量组α1,α2,α3,α4线性无关,则向量组()
设为正项级数,则下列结论正确的是()
设n阶矩阵A的伴随矩阵为A*,证明:|A*|=|A|n一1。
已知线性方程组(1)a,b,c满足何种关系时,方程组仅有零解?(2)a,b,c满足何种关系时,方程组有无穷多组解?并用基础解系表示全部解.
设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3—2x2x3.若二次型f的规范形为y12+y22,求a的值.
二次型f(x1,x2,x3)=x12+5x22+x32一4x1x2+2x2x3的标准形可以是()
随机试题
A.正中神经B.正中神经骨间掌侧支C.肘部尺神经D.尺神经深支E.骨间背侧神经
经来量多,色淡质稀,或兼见面色白,气短懒言,肢软无力,心悸怔忡,舌淡脉细弱。治法是
在一个孤立静止的点电荷周围:
监理合同除具有委托合同的共同特点外,还具有的特点包括( )。
勘察设计合同是以()为标的合同。
可转换债券的初始转股价格因公司()进行调整。
人才和“庸才”是在一个特定时期、特定环境下相对而言的判断,没有绝对的人才,也没有绝对的“庸才”。现在是人才,如果不努力,也许后来就成了“庸才”;虽然现在是“庸才”,但勤奋好学,也许后来就成了人才。况且“庸才”只能说明能力素质比别人差些,并不代表道德、人品不
超额准备金率的变动主要取决于()的行为。
在椭圆面2x2+2y2+z2=1上求一点,使得函数f(x,y,z)=x2+y2+z2在该点沿方向l=(1,-1,0)的方向导数
Isitpossibletopersuademankindtolivewithoutwar?Warisanancientinstitutionwhichhasexistedforatleastsixthousan
最新回复
(
0
)