首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶正定矩阵,证明: A-1仍为正定矩阵;
设A为n阶正定矩阵,证明: A-1仍为正定矩阵;
admin
2021-07-27
27
问题
设A为n阶正定矩阵,证明:
A
-1
仍为正定矩阵;
选项
答案
方法一 用合同法.依题设,已知A为n阶正定矩阵,因此必与单位矩阵合同。即存在可逆矩阵C,使得A=C
T
C,从而有A
-1
=C
-1
(C
T
)
-1
=C
-1
(C
-1
)
T
,知存在可逆矩阵Q=(C
-1
)
T
,使得A
-1
=Q
T
Q,因此,A
-1
仍为正定矩阵. 方法二 用特征值法.依题设,已知A为n阶正定矩阵,因此,A的全部特征值为正,即λ
i
>0(i=1,2,…,n),因为A
T
=A,则(A
-1
)
T
=(A
T
)
-1
=A
-1
,即A
-1
为对称矩阵,又A
-1
的特征值为A的特征值的倒数,即为λ
i
-1
>0,从而知A
-1
的特征值全部为正,因此,A
-1
仍为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/WQy4777K
0
考研数学二
相关试题推荐
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,设若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y22+y22
下列命题中①如果矩阵AB=E,则A可逆且A一1=B;②如果n阶矩阵A,B满足(AB)2=E,则(BA)2=E;③如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆;④如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆。正确的是()
某公司可通过电台及报纸两种方式做销售某种商品的广告,根据统计资料,销售收入R(万元)与电台广告费x1(万元)及报纸广告费用x2(万元)之间的关系有如下经验公式:R=15+14x1+32x2—8x1x2—2x12一10x22.(1)在广告
设矩阵A=,矩阵B满足(A*)-1BA*=BA*+8A,其中A*为A的伴随矩阵,求矩阵B.
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1—λ1)β1+…+(ks一λs)βs=0,则
已知向量组(I)α1,α2,α3,α4线性无关,则与(I)等价的向量组是()
设二次型f(x1,x2,x3)=XTAX,已知r(A)=2,并且A满足A2-2A=0.则下列各标准二次型(1)2y12+2y22.(2)2y12.(3)2y12+2y32.(4)2y22+2y32.中可用正交变换化为f的是(
设问a,b,c为何值时,矩阵方程AX=B有解?有解时求出全部解.
某五元齐次线性方程组的系数矩阵经初等变换,化为.则自由变量可取为(1)x4,x5.(2)x3,x5.(3)x1,x5.(4)x2,x3.那么正确的共有()
设A是m×n矩阵,AT是A的转置,若η1,η2,…,ηt为方程组ATx=0的基础解系,则r(A)=()
随机试题
人工地增加细胞外液中Na+浓度时,单根神经纤维动作电位的幅度将
(2001年第85题)预防甲状腺肿的碘化食盐,常用剂量为每10~20kg食盐中均匀地加入碘化钾或碘化钠
患者,男性,36岁。油漆厂工人,近半年头晕、乏力,未重视,上周感冒后症状加重,伴发热,体温最高达39℃,急查血常规:血红蛋白75g/L,白细胞2.9×109/L,血小板50×109/L。查体肝、脾未触及。根据临床特点,最可能的诊断是
A.药典品种的通用名B.非药典品种的通用名C.曾用名D.药品的商标E.商品名采用《中国药品通用名称》所规定的名称是()。
质量计划应根据()来编制。
路由器作为网络互连设备,必须具备以下哪些特点()。
小王的表现一直十分优秀,年终考核是第一名,是优秀员工的最佳人选,但是局长觉得小王还太年轻,没有给小王评优秀。小王心里有情绪,消极怠工,并想要以工作压力大为由调岗。如果你是小王的朋友。你会怎么安慰他,请现场模拟。
《雪绒花》是哪部影片的插曲?()
设函数y=y(x)满足△y=△x+o(△x),且y(1)=1,则∫01y(x)dx=—一.
Internet网上一台主机的域名由几部分组成?
最新回复
(
0
)