首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶正定矩阵,证明: A-1仍为正定矩阵;
设A为n阶正定矩阵,证明: A-1仍为正定矩阵;
admin
2021-07-27
42
问题
设A为n阶正定矩阵,证明:
A
-1
仍为正定矩阵;
选项
答案
方法一 用合同法.依题设,已知A为n阶正定矩阵,因此必与单位矩阵合同。即存在可逆矩阵C,使得A=C
T
C,从而有A
-1
=C
-1
(C
T
)
-1
=C
-1
(C
-1
)
T
,知存在可逆矩阵Q=(C
-1
)
T
,使得A
-1
=Q
T
Q,因此,A
-1
仍为正定矩阵. 方法二 用特征值法.依题设,已知A为n阶正定矩阵,因此,A的全部特征值为正,即λ
i
>0(i=1,2,…,n),因为A
T
=A,则(A
-1
)
T
=(A
T
)
-1
=A
-1
,即A
-1
为对称矩阵,又A
-1
的特征值为A的特征值的倒数,即为λ
i
-1
>0,从而知A
-1
的特征值全部为正,因此,A
-1
仍为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/WQy4777K
0
考研数学二
相关试题推荐
设A为n阶可逆矩阵,A是A的一个特征值,则A的伴随矩阵A*的特征值之一是()
证明:当x>0时,x2>(1+x)ln2(1+x).
设为正项级数,则下列结论正确的是()
设α0是A的特征向量,则α0不一定是其特征向量的矩阵是
设A=有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
设矩阵A=相似于对角娃阵.(1)求a的值;(2)求一个正交变换,将二次型f(χ1,χ2,χ3)=χTAχ化为标准形,其中χ=(χ1,χ2,χ3)T.
某五元齐次线性方程组的系数矩阵经初等变换,化为.则自由变量可取为(1)x4,x5.(2)x3,x5.(3)x1,x5.(4)x2,x3.那么正确的共有()
已知线性方程组(1)a,b,c满足何种关系时,方程组仅有零解?(2)a,b,c满足何种关系时,方程组有无穷多组解?并用基础解系表示全部解.
设A是4×5矩阵,ξ1=[1,一1,1,0,0]T,ξ2=[一1,3,一1,2,0]T,ξ3=[2,1,2,3,0]T,ξ4=[1,0,一1,l,-2]T都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ1,ξ2,ξ3,ξ4线性表出,若k1,k
设随机变量X和Y相互独立,且都服从标准正态分布N(0,1),求Z=(X+Y)2的概率密度fZ(Z).
随机试题
下列骨折中,最不稳定的是
下列选项中,可作为清洁生产中的新用水量指标的是()。
会计职业道德教育的途径有()。
HACCP是()的缩写,它是一个保证食品安全的预防性管理体系。
学生在课堂上向你提出一个意想不到又很有价值的问题,你不能马上做出正确的解答。这时,正确的做法是()。
贝加尔湖曾是中国古代北方游牧民族主要活动地区,汉代苏武牧羊之地,《中俄尼布楚条约》签订以后划给俄国。()
根据以下资料,回答下列问题。下列说法正确的是()。
表格国家中,2012年1~9月中国从亚洲国家(地区)进口消费品比从欧洲国家少()亿美元。
也许是看到了“群体智慧”所爆发的惊人力量,很多风险投资开始重新__________“人”的作用。与__________的新搜索技术相比,他们更愿意将赌注压在混合型搜索引擎的研发上,即利用人的智慧弥补机器算法的不足。这种搜索引擎有一个__________的名
HowtoWriteaBookReviewI.ThedefinitionofabookreviewA.adescriptiveandcriticalorevaluativeaccountofabookB.a
最新回复
(
0
)