首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶可逆阵,将A的第i行和第j行对换得到的矩阵记为B,证明:B可逆,并推导A-1和B-1的关系.
设A是n阶可逆阵,将A的第i行和第j行对换得到的矩阵记为B,证明:B可逆,并推导A-1和B-1的关系.
admin
2017-07-10
93
问题
设A是n阶可逆阵,将A的第i行和第j行对换得到的矩阵记为B,证明:B可逆,并推导A
-1
和B
-1
的关系.
选项
答案
记E
ij
为初等阵 [*] 则B=E
ij
A,|B|=|E
ij
A|=|E
ij
||A|=一|A|≠0,故B可逆,且 B
-1
=(E
ij
A)
-1
=A
-1
E
ij
-1
=A
-1
E
ij
. 故知B的逆矩阵可由A的逆矩阵交换第i列和第j列之后得到.
解析
转载请注明原文地址:https://kaotiyun.com/show/WYt4777K
0
考研数学二
相关试题推荐
[*]
对离散型情形证明:(1)E(X+Y)=EX+EY.(2)EXY=EXEY
利用定积分计算极限
设f(x)为单调函数且二阶可导,其反函数为g(x),又f(1)=2,,f〞(1)=1.求gˊ(2),g〞(2).
证明下列各题:
证明:
设曲线y=ax2(a>0,x≥0)与y=1-x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形.问a为何值时,该图形绕x轴旋转一周所得的旋转体体积最大?最大体积是多少?
对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是
随机试题
主要起胃黏膜保护作用的药物是
关于苯二氮类的不良反应,哪项不正确
乳腺癌侵犯乳房悬韧带(cooper韧带)后,引起相应的皮肤改变是
砌体施工质量控制等级应分为()级。
会计软件包括如下资料( )。
下列选项中,属于我国预算法律制度的构成的有()。
上级两周后要来检查防火、防盗、防泄密工作,你是本单位这方面工作的负责人,你该怎么安排?
(Ⅰ)求累次积分(Ⅱ)设连续函数f(x)满足f(x)=1+∫x1f(y)f(y一x)dy,记I=∫01f(x)dx,求证:I=1+∫01f(y)dy∫0yf(y一x)dx,(Ⅲ)求出I的值.
视觉上对彩色的感觉有三个特征,反映人眼所感到的明亮程度的叫(156);反映颜色种类的特征叫(157),反映颜色深浅程度的叫(158),二者有时通称为(159)。彩数(color depth)是指(160),其单位为bpp。
Humanityusesalittlelessthanhalfthewateravailableworldwide.Yetoccurrencesofshortagesanddroughtsarecausingfamin
最新回复
(
0
)