首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若f"(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内( )
若f"(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内( )
admin
2018-04-14
57
问题
若f"(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x
2
+y
2
=2,则函数f(x)在区间(1,2)内( )
选项
A、有极值点,无零点。
B、无极值点,有零点。
C、有极值点,有零点。
D、无极值点,无零点。
答案
B
解析
由于曲率圆与曲线在一点邻近有相同的凹向,而曲率圆x
2
+y
2
=2在点(1,1)邻近是凸的,所以曲线f(x)在点(1,1)邻近也是凸的。又由于f"(x)不变号,所以f(x)是凸函数,即f"(x)<0,且在点(1,1)处的曲率
曲率圆x
2
+y
2
=2两边对x求导,可得2x+2y.y’=0,即y’(1)=-1。由于曲率圆与曲线在一点处有相同的切线和曲率,所以f’(1)=1。由此可得,f"(1)=-2。
在[1,2]上,由于f"(x)<0,所以f’(x)单调减少,且f’(x)≤f’(1)=-1<0,即f(x)在[1,2]上没有极值点。
在[1,2]上应用拉格朗日中值定理,可得f(2)-f(1)=f’(ξ)<-1,ξ∈(1,2)。由于f(1)=1,所以f(2)=f’(ξ)+f(1)<-1+1=0。由零点定理可知,f(x)在区间(1,2)内有零点。故应选B。
转载请注明原文地址:https://kaotiyun.com/show/c3k4777K
0
考研数学二
相关试题推荐
已知二次型f(x1,x2,x3)=4x2-3x3+4x1x2-4x1x3+8x2x3.用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
设A,B为3阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|=_____________.
函数y=x+2cosx在[0,π/2]上的最大值为________.
已知非齐次线性方程组有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:存在f∈(0,1),使得f(ξ)=1-ξ;
设位于第一象限的曲线y=f(x)过点,其上任一点P(x,y)处的法线与y轴的交点为Q,且线段PQ被x轴平分.求曲线y=f(x)的方程;
设函数f(x,y)连续,则二次积分f(x,y)dy等于().
设A从原点出发,以固定速度v0沿y轴正向行驶,B从(x0,0)出发(x0<0),以始终指向点A的固定速度v1,朝A追去,求B的轨迹方程.
(2003年试题,一)设函数y=f(x)由方程xy+21nx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程是__________.
用变量代换x=cost(0<t<π)化简微分方程(1-x2)y"-xy’+y=0,并求其满足的特解.
随机试题
下列有关委任制任职方式说法正确的有()
A.绝对卧床休息B.可适当活动,以无不适症状为度C.以卧床休息为主,间断起床活动D.可起床轻微活动,需增加活动量间歇时间E.恢复部分或较轻工作对心绞痛患者活动指导为
有机磷农药生产或使用过程中,导致人体中毒的主要途径是
对四环素不敏感的病原体是
投资估算准确与否,将直接影响经济评价的()。
有支护的深基坑工程,其挖土方案主要有()。
工程管理信息化指的是工程管理()的开发和利用,以及信息技术的开发和应用。
在幼儿期,应主要发展幼儿的()。
NarratorListentopartofatalkinamusicclass.Nowgetreadytoanswerthequestions.Youmayuseyournotestoh
A、Hewouldbuyhimahouse.B、HewouldbuyhisparentsahouseinUSA.C、Hewouldsavesomemoneyinthebank.D、Hewouldconsum
最新回复
(
0
)