首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若f"(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内( )
若f"(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内( )
admin
2018-04-14
81
问题
若f"(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x
2
+y
2
=2,则函数f(x)在区间(1,2)内( )
选项
A、有极值点,无零点。
B、无极值点,有零点。
C、有极值点,有零点。
D、无极值点,无零点。
答案
B
解析
由于曲率圆与曲线在一点邻近有相同的凹向,而曲率圆x
2
+y
2
=2在点(1,1)邻近是凸的,所以曲线f(x)在点(1,1)邻近也是凸的。又由于f"(x)不变号,所以f(x)是凸函数,即f"(x)<0,且在点(1,1)处的曲率
曲率圆x
2
+y
2
=2两边对x求导,可得2x+2y.y’=0,即y’(1)=-1。由于曲率圆与曲线在一点处有相同的切线和曲率,所以f’(1)=1。由此可得,f"(1)=-2。
在[1,2]上,由于f"(x)<0,所以f’(x)单调减少,且f’(x)≤f’(1)=-1<0,即f(x)在[1,2]上没有极值点。
在[1,2]上应用拉格朗日中值定理,可得f(2)-f(1)=f’(ξ)<-1,ξ∈(1,2)。由于f(1)=1,所以f(2)=f’(ξ)+f(1)<-1+1=0。由零点定理可知,f(x)在区间(1,2)内有零点。故应选B。
转载请注明原文地址:https://kaotiyun.com/show/c3k4777K
0
考研数学二
相关试题推荐
若向量组α,β,γ线性无关;α,β,δ线性相关,则
设函数f(x)在[0,1]上连续,(0,1)内可导,且证明在(0,1)内存在一点,使fˊ﹙C﹚=0.
下列微分方程中,以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是().
微分方程y〞-y=ex+1的一个特解应具有形式(式中a、b为常数)为().
已知函数f(x)具有二阶导数,且f(0)=1,函数y=y(x)由方程y-xey-1=1所确定.设.
求极限
改变积分次序=__________.
(2010年试题,23)设1707正交矩阵Q使QTTAQ为对角阵,若Q的第一列为.求a,Q.
用区间表示满足下列不等式的所有x的集合:(1)|x|≤3(2)|x-2|≤1(3)|x-a|<ε(a为常数,ε>0)(4)|x|≥5(5)|x+1|>2
设集合A={1,2,a,b},B={2,4,c,d},已知A∪B={1,2,3,4,5,6},A∩B={2,4),A-B={1,3},那么a,b,c,d可以是[].
随机试题
剪力墙的优缺点是什么?
下列关于消费者监督批评权的表述正确的是()
分段围堰导流法包括束窄河床导流和()。
下列关于公司对外投资和担保的说法,不符合《公司法》规定的是()。
社区是社会环境的主要构成要素之一,其对人类行为的影响是()。
如图,圆锥的地面半径为5cm,侧面积为65πcm2,若圆锥的母线与高的夹角为θ,则sinθ=_________.
第20届冬季奥运会于2006年2月在()举行,中国军团获得两枚金牌,与上届冬奥会持平。
研究者欲研究某城市居民环境保护的动机类型(A因素:短暂动机、长远动机)和环保行为(B因素:宣传、批评、治理)对所在社区环境质量的影响。研究者采用组间设计,每种处理方式下研究了10位成年居民,下面是尚未填写完毕的研究结果的方差分析表。请给出方差分析表中①②③
Arecentstudy,publishedinlastweek’sJournaloftheAmericanMedicalAssociation,offersapictureofhowriskyitistoget
Sheis______kindagiftthatallofusliketomakefriendswithher.
最新回复
(
0
)