首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组α1,α2,…,αs+1(s>1)线性无关,βi=αi+tαi-1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
已知向量组α1,α2,…,αs+1(s>1)线性无关,βi=αi+tαi-1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
admin
2018-09-25
34
问题
已知向量组α
1
,α
2
,…,α
s+1
(s>1)线性无关,β
i
=α
i
+tα
i-1
,i=1,2,…,s.证明:向量组β
1
,β
2
,…,β
s
线性无关.
选项
答案
设有数k
1
,k
2
,…,k
s
,使得 k
1
β
1
,k
2
β
2
,…,k
s
β
s
=0 成立,即 k
1
(α
1
+tα
2
)+k
2
(α
2
+tα
3
)+…+k
s
(α
s
+tα
s+1
) =k
1
α
1
+(k
1
t+k
2
)α
2
+(k
2
t+k
3
)α
3
+…+(k
s-1
t+k
s
)α
s
+k
s
tα
s-1
=0. 因α
1
,α
2
,…,α
s+1
线性无关,故 [*] 得唯一解k
1
=k
2
=…=k
s
=0,故β
1
,β
2
,…,β
s
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/Weg4777K
0
考研数学一
相关试题推荐
证明上三角矩阵的乘积仍是上三角矩阵.
已知A=,若A*B(A*)*=8A-1B+12E,①求矩阵B.
将函数f(x)=sin(x+a)展开成x的幂级数,并求收敛域.
设n维列向量α1,α2,…,αn-1,β线性无关,且与非零向量β1,β2都正交.证明β1,β2线性相关,α1,α2,…,αn-1,β1线性无关.
设α1=(1,1)T,α2=(1,0)T和β1=(2,3)T,β2=(3,1)T,求由α1,α2到β1,β2的过渡矩阵.
设A,B都是m×n矩阵,则r(A+B)≤r(A)+r(B).
设α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,-2)T,若β1=(1,3,4)T可以由α1,α2,α3线性表出,β2=(0,1,2)T不能由α1,α2,α3线性表出,则a=__________.
设X1,X2,…,X10是来自正态总体X~N(0,22)的简单随机样本,求常数a,b,c,d,使Q=a+b(X2+X3)2+c(X4+X5+X6)2+d(X7+X8+X9+X10)2服从χ2分布,并求自由度m.
随机试题
1岁半小儿,突起腹泻,大便每日10多次,粘液状,带脓血,伴恶心、,呕吐、高热和腹痛。查体:T39.5℃,精神极差,意识模糊,呼吸深快,有烂苹果味,面色苍灰,前囟眼窝明显凹陷,哭无泪,口唇干燥,皮肤弹性差,脉细弱,尿少,四肢冰冷,心音低钝可闻及早搏。化验:大
下列法律主体中,绝对不可以作为保证人的是()。
下列短期筹资策略中,()是一种理想的筹资策略,较难在现实经济活动中得以圆满地实现。
企业的长期借款到期归还本金时,应记入“长期借款”的贷方。()
票据行为是一种特定的法律行为,下面对其特征表述不正确的是()。
税法属于义务性法规,税收法律关系的产生应以()为基础和标志。
在Kano模型中,()是质量的竞争性元素。
生物链指的是由动物、植物和微生物互相提供食物而形成的相互依存的链条关系。这种关系在大自然中很容易看到。生物链也可以理解为自然界中的食物链,它形成了大自然中“一物降一物”的现象,维系着物种间天然的数量平衡。根据上述定义,下列不属于生物链的是()
白驹过隙:光阴似箭:时间
Ifthereisonethingthatcouldhalttheascentofsocialnetworks,itisthethornyquestionofprivacy.Thisis【C1】______beca
最新回复
(
0
)