首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设Ф(χ)在[a,b]二阶可导,Ф〞(χ)≤0,在[a,b]的子区间上Ф〞(χ)≠0,又Ф(a)=Ф(b)=0,求证Ф(χ)>0(χ∈(a,b)). (Ⅱ)设f(χ)在[0,1]上可导,且f(χ)≥0,f′(χ)<0. 求证:函数F(
(Ⅰ)设Ф(χ)在[a,b]二阶可导,Ф〞(χ)≤0,在[a,b]的子区间上Ф〞(χ)≠0,又Ф(a)=Ф(b)=0,求证Ф(χ)>0(χ∈(a,b)). (Ⅱ)设f(χ)在[0,1]上可导,且f(χ)≥0,f′(χ)<0. 求证:函数F(
admin
2019-07-19
39
问题
(Ⅰ)设Ф(χ)在[a,b]二阶可导,Ф〞(χ)≤0,在[a,b]的
子区间上Ф〞(χ)≠0,又Ф(a)=Ф(b)=0,求证Ф(χ)>0(χ∈(a,b)).
(Ⅱ)设f(χ)在[0,1]上可导,且f(χ)≥0,f′(χ)<0.
求证:函数F(χ)=∫
0
χ
f(t)dt满足
χF(1)<F(χ)<2∫
0
1
F(t)dt,
χ∈(0,1).
选项
答案
(Ⅰ)由罗尔定理知,[*]c∈(a,b),Ф′(c)=0.由Ф′(χ)在[a,b]↘, [*] [*](χ)在[a,c]↗,在[c,b]↘,[*] Ф(χ)>Ф(a)=0(a<χ≤c), Ф(χ)>Ф(b)=0(c≤χ<b) 因此,Ф(χ)>0(a<χ<b). (Ⅱ)令Ф(χ)=F(χ)-χF(1),则Ф(χ)在[0,1]二阶可导,在[0,1]区间 Ф′(χ)=f(χ)-F(1),Ф〞(χ)=f′(χ)<0 且Ф(0)=F(0)=0,Ф(1)=F(1)-F(1)=0. 由题(Ⅰ)得 Ф(χ)>0(χ∈(0,1)) 即F(χ)>χF(1)(χ∈(0,1)) 将上式两边在[0,1]积分得 ∫
0
1
F(χ)dχ>∫
0
1
χdχ.F(1)=[*]F(1). 由F(χ)在[0,1]单调上升,F(1)>F(χ)(χ∈(0,1))[*] 2∫
0
1
F(χ)dχ>F(1)>F(χ)(χ∈(0,1)). [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Wfc4777K
0
考研数学一
相关试题推荐
向量组(I):α1,α2,…,αm线性无关的充分条件是(I)中
设函数f(x)=其中g(x)二阶连续可导,且g(0)=1.求f’(x);
设f(x)具有二阶导数,且f(0)=0,f’(0)=2,f’’(0)=-4,则等于()
求下列不定积分:
设0<x1<3,xn+1=(n=1,2,…),证明数列{xn}的极限存在,并求此极限.
将下列函数展开为x的幂级数.f(x)=ln(1+x+x2+x3)
将下列函数展开为x的幂级数.
设f(x)在0<|x|<δ时有定义,其中δ为正常数,且求极限:
将f(x)=arctanx展开成x的幂级数.
把当x→0时的无穷小量α=ln(1+x2)一ln(1一x4),γ=arctanx一x排列起来,使排在后面的是前一个的高阶无穷小,则正确的排列次序是
随机试题
简述包销协议的主要内容。
耳鼻喉科手术麻醉特点
下列关于牙髓内注射法的描述,错误的是
投资项目安全预评价常用的方法有()
简述肩关节容易前下脱位的原因。
下面是某教师的教学活动片段,根据要求回答问题。某教师在讲授“Whatcanyoudo”一课时,是这样进行教学的。(1)教师用媒体播放歌曲“Goodmorningtoyou”,播放完毕后向所有学生问好。(2)首先复习一些学过的短语,并播放相
根据下面材料回答下列问题。2013年1—7月,某市规模以上工业增加值同比增长12.0%,增速比去年同期提高1.4个百分点。1—7月,全市国有及国有控股企业完成增加值同比下降3.5%;民营企业完成增加值同比增长24.8%:外商控股企业完成增加值同比下降3
ItshouldgowithoutsayingthatthefocusofUMLismodeling.However,whatthatmeans,exactly,canbeanopen-endedquestion.
A、Alargeschoolcrestonthefront.B、Asmallschoolcrestontheback.C、Aschoolcrestonboththefrontandtheback.D、Nos
Thereisapopularbeliefamongparentsthatschoolsarenolongerinterestedinspelling.Thisis,however,a【S1】______.Noscho
最新回复
(
0
)