首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设Ф(χ)在[a,b]二阶可导,Ф〞(χ)≤0,在[a,b]的子区间上Ф〞(χ)≠0,又Ф(a)=Ф(b)=0,求证Ф(χ)>0(χ∈(a,b)). (Ⅱ)设f(χ)在[0,1]上可导,且f(χ)≥0,f′(χ)<0. 求证:函数F(
(Ⅰ)设Ф(χ)在[a,b]二阶可导,Ф〞(χ)≤0,在[a,b]的子区间上Ф〞(χ)≠0,又Ф(a)=Ф(b)=0,求证Ф(χ)>0(χ∈(a,b)). (Ⅱ)设f(χ)在[0,1]上可导,且f(χ)≥0,f′(χ)<0. 求证:函数F(
admin
2019-07-19
28
问题
(Ⅰ)设Ф(χ)在[a,b]二阶可导,Ф〞(χ)≤0,在[a,b]的
子区间上Ф〞(χ)≠0,又Ф(a)=Ф(b)=0,求证Ф(χ)>0(χ∈(a,b)).
(Ⅱ)设f(χ)在[0,1]上可导,且f(χ)≥0,f′(χ)<0.
求证:函数F(χ)=∫
0
χ
f(t)dt满足
χF(1)<F(χ)<2∫
0
1
F(t)dt,
χ∈(0,1).
选项
答案
(Ⅰ)由罗尔定理知,[*]c∈(a,b),Ф′(c)=0.由Ф′(χ)在[a,b]↘, [*] [*](χ)在[a,c]↗,在[c,b]↘,[*] Ф(χ)>Ф(a)=0(a<χ≤c), Ф(χ)>Ф(b)=0(c≤χ<b) 因此,Ф(χ)>0(a<χ<b). (Ⅱ)令Ф(χ)=F(χ)-χF(1),则Ф(χ)在[0,1]二阶可导,在[0,1]区间 Ф′(χ)=f(χ)-F(1),Ф〞(χ)=f′(χ)<0 且Ф(0)=F(0)=0,Ф(1)=F(1)-F(1)=0. 由题(Ⅰ)得 Ф(χ)>0(χ∈(0,1)) 即F(χ)>χF(1)(χ∈(0,1)) 将上式两边在[0,1]积分得 ∫
0
1
F(χ)dχ>∫
0
1
χdχ.F(1)=[*]F(1). 由F(χ)在[0,1]单调上升,F(1)>F(χ)(χ∈(0,1))[*] 2∫
0
1
F(χ)dχ>F(1)>F(χ)(χ∈(0,1)). [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Wfc4777K
0
考研数学一
相关试题推荐
假设二维随机变量(X1,X2)的协方差矩阵为∑=,其中σij=Cov(Xi,Xj)(i,j=1,2),如果X1与X2的相关系数为ρ,那么行列式|∑|=0的充分必要条件是()
微分方程y’’一4y=x+2的通解为().
f(x)=δ为大于零的常数,又g’—(x0),h’+(x0)均存在,则g(x0)=h(x0),g’—(x0)=h’+(x0)是f(x)在x0可导的()
设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=
设A,B均为n阶对称矩阵,则不正确的是()
已知随机变量X的概率密度(Ⅰ)求分布函数F(x).(Ⅱ)若令Y=F(X),求Y的分布函数FY(y).
利用格林公式计算∫L(exsiny+x—y)dx+(excosy+y)dy,其中L是圆周y=(a>0)上从点A(2a,0)到点O(0,0)的弧段.
A=,求A的特征值.判断a,b取什么值时A相似于对角矩阵。
求两曲面x2+y2=z与-2(x2+y2)+z2=3的交线在xOy平面上的投影曲线方程。
两个平行平面Π1:2x-y-3z+2=0与Π2:2x-y-3z-5=0之间的距离是_____________。
随机试题
女性,55岁,4年来逐渐出现上腹胀满,食欲减退,伴舌炎及巨幼红细胞贫血,胃镜见胃黏膜,红白相问以白为主,该患诊断首先考虑
左心衰竭发生呼吸困难的主要机制是
下列组胺的生理效应,H1受体拮抗药所对抗的是( )。
代表一定债券的有价证券是()。
报检日期按提单日期填写。( )
()是指仅依据员工的个人因素对同一组织完成类似工作的员工支付薪酬。
根据变压器的空载试验可以求得()。
关于法与科技的关系,下列说法正确的有
Nobodylikestobespiedon,especiallybytheirallies,soitishardlysurprisingthatEuropeansareangryaboutAmericanespi
ManyChinesefriendswenttotheparty.ThereweremanyChinesefriends____________.
最新回复
(
0
)