首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A、B为同阶正定矩阵,且AB=BA,证明:AB为正定矩阵.
设A、B为同阶正定矩阵,且AB=BA,证明:AB为正定矩阵.
admin
2017-04-23
45
问题
设A、B为同阶正定矩阵,且AB=BA,证明:AB为正定矩阵.
选项
答案
因A、B正定,有A
T
=A,B
T
=B,故(AB)
T
=B
T
A
T
=BA=AB,即AB也是对称矩阵,因A正定,由第10题,存在正定阵S,使A=S
2
,于是S
一1
(AB)S=S
一1
SSBS=SBS=S
T
BS,由于B正定,故与B合同的矩阵S
T
BS正定,故S
T
BS的特征值全都大于零,而S
一1
(AB)S=S
T
BS,说明AB与S
T
BS相似,由于相似矩阵有相同的特征值,故AB的特征值(即S
T
BS的特征值)全都大于零,因而对称阵AB正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/Wkt4777K
0
考研数学二
相关试题推荐
下列四个等式中不成立的是________。其中D:x2+y2≤1,D1:x2+y2≤1,x≥0,y≥0
设在部分球面x2+y2+z2=5R2,x>0,y>0,z>0上函数f(x,y,z)=lnx+lny+3lnz有极大值,试求此最大值,并利用上述结果证明对任意正数a,b,c总满足abc3≤275
设偶函数f(x)的二阶导数f’’(x)在x=0的某邻域内连续,且f(0)=1,f"(0)=2,试证级数绝对收敛。
一质点从时间t=0开始直线运动,移动了单位距离使用了单位时间,且初速度和末速度都为零.证明:在运动过程中存在某个时刻点,其加速度绝对值不小于4.
设fn(x)=x+x2+…+xn(n≥2).证明:方程fn(x)=1有唯一的正根xn;
设y=y(x)是区间[-π,π]内过的光滑曲线,当-π<x<0时,曲线上任一点处的法线都过原点,当0≤x≤π时,函数y(x)满足y"+y+x=0,求y(x)的表达式。
设L:y=e-x(x≥0).求由y=e-x、x轴、y轴及x=a(a>0)所围成平面区域绕x轴旋转一周而得的旋转体的体积V(a).
设f(x)=3x2+Ax-3,问正数A至少为何值时,可使对任意的x∈(0,+∞),都有f(x)≥20.
设A为n阶可逆矩阵,则下列结论正确的是().
随机试题
进口水温控制法:
下列各句中的俗语使用正确的一句是()
何谓软下疳?试述其治疗方法。
建设工程发生质量事故后,有关单位应当在()小时内向当地建设行政主管部门和其他有关部门报告。
通常,判断股票的流动性强弱主要分析()。Ⅰ.市场深度Ⅱ.市场宽度Ⅲ.报价紧密度Ⅳ.股票的价格弹性或者恢复能力
VincentWillemVanGoghwasa(n)______painter.
一天夜晚,甲开车逆行迫使骑自行车的乙为躲避甲而往右拐,撞到了行人丙。丙的损失应当由()。
抽样调查的主要目的是()。
Thedramacritic,ontheotherhand,hasnosuchadvantage.Hecannotbeselective;hemustcovereverythingthatisofferedfor
RogerRosenblatt’sbookBlackFiction,inattemptingtoapplyliteraryratherthansociopoliticalcriteriatoitssubject,succe
最新回复
(
0
)