首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)和g(x)在区间(a,b)可导,并设在(a,b)内f(x)g’(x)一f’(x)≠0,证明在(a,b)内至多存在一点ξ,使得f(ξ)=0。
设f(x)和g(x)在区间(a,b)可导,并设在(a,b)内f(x)g’(x)一f’(x)≠0,证明在(a,b)内至多存在一点ξ,使得f(ξ)=0。
admin
2020-03-08
28
问题
设f(x)和g(x)在区间(a,b)可导,并设在(a,b)内f(x)g’(x)一f’(x)≠0,证明在(a,b)内至多存在一点ξ,使得f(ξ)=0。
选项
答案
(反证法):假设在(a,b)内存在两个不同的点ξ
1
,ξ
2
,使得f(ξ
1
)=f(ξ
2
)=0,令 φ(x)=f(x)e
-g(x)
,则 φ’(x)=e
-g(x)
[f’(x)一f(x)g’(x)]。 因为φ(ξ
1
)=φ(ξ
2
)=0,由罗尔定理知,至少存在一点ξ介于ξ
1
,ξ
2
之间,使φ’(ξ)=0, 即e
-g(ξ)
[f’(ξ)-f(ξ)g’(ξ)]=0,于是有f’(ξ)一f(ξ)g’(ξ)=0,这与题设矛盾,所以假设不成立。 故在(a,b)内至多存在一点ξ,使得f(ξ)=0。
解析
转载请注明原文地址:https://kaotiyun.com/show/WlS4777K
0
考研数学一
相关试题推荐
已知齐次线性方程组其中试讨论a1,a2,…,an和b满足何种关系时,(1)方程组仅有零解;(2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
计算.
注意分解1+x6=1+(x2)3=(1+x2)(1-x2+x4).[*]
设un>0(n=1,2,…),Sn=u1+u2+…+un.证明:收敛.
设A,B是两个n阶实对称矩阵,并且A正定.证明:(1)存在可逆矩阵P,使得PTAP,PTBP都是对角矩阵;(2)当|ε|充分小时,A+εB仍是正定矩阵.
设随机变量X,Y独立同分布,且X~N(0,σ2),再设U=aX+bY,V=aX一bY,其中a,b为不相等的常数.求:E(U),E(V),D(U),D(V),ρUV;
用变量代换x=lnt将方程+e2xy=0化为y关于t的方程,并求原方程的通解.
随机试题
简述按行政业务性质进行横向分部化的优缺点。
有关APTT的叙述,不正确的是
左心衰竭时最早出现和最重要的症状是()
香附来源于( )。
尿药排泄速率常数( )。代谢速率常数( )。
造成药品供需矛盾的主要原因是
高性能混凝土配合比设计应考虑以下哪些内容()。
在下列采取的混凝土防裂缝技术措施中,不属于设计措施的是()。
某会计人员根据记账凭证登记明细账时,误将700元写为7000元,且记账凭证无误,应采用下列用()方法修改此情况。
委托加工的应税消费品收回后直接出售的,不再征收消费税。()
最新回复
(
0
)