首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为O,5,32.求A-1的特征值并判断A-1是否可对角化.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为O,5,32.求A-1的特征值并判断A-1是否可对角化.
admin
2018-05-22
35
问题
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A
*
)
2
-4E的特征值为O,5,32.求A
-1
的特征值并判断A
-1
是否可对角化.
选项
答案
设A的三个特征值为λ
1
,λ
2
,λ
3
,因为B=(A
*
)
2
-4E的三个特征值为0,5,32,所以(A
*
)
2
的三个特征值为4,9,36,于是A
*
的三个特征值为2,3,6. 又因为|A
*
|=36=|A|
3-1
,所以|A|=6. 由[*]=6,得λ
1
=3,λ
2
=2,λ
3
=1, 由于一对逆矩阵的特征值互为倒数,所以A
-1
的特征值为[*] 因为A
-1
的特征值都是单值,所以A
-1
可以相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/Wqk4777K
0
考研数学二
相关试题推荐
设函数y(x)由参数方程确定,则曲线y=y(x)向上凸的x取值范围为______.
如图1—3—17,一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y2=2y与x2+y2=1连接而成的.(1)求容器的体积;(2)若将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位:m,重力加速度为gm/
如图1—3—12,连续函数y=(x)在区间[-3,-2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[-2,0],[0,2]上的图形分别是直径为2的下、上半圆周.设F(x)=∫0xf(t)dt出,则下列结论正确的是
设函数z=f(xy,yg(x)),函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求.
设矩阵,矩阵X满足A*X=A-1+2X,其中A*是A的伴随矩阵,求矩阵X。
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有
求,其中D是由圆x2+y2=4和(x+1)2+y2=1所围成的平面区域(如图1—5—13).
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).(1)证明∫-aaf(x)g(x)dx=A∫0ag(x)dx;(2)利用(1)的结论计算定积分|sinx|arct
设ξ1=[1,一2,3,2]T,ξ2=[2,0,5,一2]T是齐次线性方程组Ax=0的基础解系,则下列向量中是齐次线性方程组Ax=0的解向量的是()
(2010年)设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示.下列命题正确的是【】
随机试题
审美活动作为价值活动的特殊性表现在()
患者,男性,40岁。继往体健。发热4天,伴有头痛、畏寒、肌肉酸痛、乏力,轻微干咳,胸痛。2天前突然高热T39.6℃,伴咳嗽明显,胸闷,有呼吸困难。胸片示炎症阴影迅速扩大。其居住地报告有SARS流行。本患者最可能的诊断是
关于胆囊的叙述,错误的是
天麻的药用部位为( )。
国际上大型工程咨询公司拓展业务的趋势之一是( )。
在单机系统中提供存储器系统性能的主要措施有()。
下列关于Access内置函数的分类中,错误的是()。
Whydoesn’tthewomanhaveenoughmoneyathandtorentabiggerhouse?
Whenyouwanttogoshoppinganddecidehowmuchmoneyyoucanspendfornewclothes,thinkaboutthekindofclothesyoureally
ATTENTIONHOMEOWNERSThefederalgovernmentwantstohelpyourepairandremodelyourhome.Regardlessofhowlongyouhave
最新回复
(
0
)